Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 21, 2015

An extended Prony’s interpolation scheme on an equispaced grid

  • Dovile Karalienė , Zenonas Navickas , Raimondas Čiegis and Minvydas Ragulskis
From the journal Open Mathematics


An interpolation scheme on an equispaced grid based on the concept of the minimal order of the linear recurrent sequence is proposed in this paper. This interpolation scheme is exact when the number of nodes corresponds to the order of the linear recurrent function. It is shown that it is still possible to construct a nearest mimicking algebraic interpolant if the order of the linear recurrent function does not exist. The proposed interpolation technique can be considered as the extension of the Prony method and can be useful for describing noisy and defected signals.


[1] Badeau R., David B., High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials, IEEE Trans. Signal Process., 2006, 54, 1341–1350. 10.1109/TSP.2006.870556Search in Google Scholar

[2] Badeau R., Richard G., David B., Performance of ESPRIT for estimating mixtures of complex exponentials modulated by polynomials, IEEE Trans. Signal Process., 2008, 56, 492–504. 10.1109/TSP.2007.906744Search in Google Scholar

[3] Ehlich H., Zeller K., Auswertung der Normen von Interpolationsoperatoren, Math. Ann., 1996, 164, 105–112. 10.1007/BF01429047Search in Google Scholar

[4] Higham N.J., The numerical stability of barycentric Lagrange interpolation, IMA J. Numer. Anal., 2004, 24, 547–556. 10.1093/imanum/24.4.547Search in Google Scholar

[5] Navickas Z., Bikulciene L., Expressions of solutions of ordinary differential equations by standard functions, Mathematical Modeling and Analysis, 2006, 11, 399–412. 10.3846/13926292.2006.9637327Search in Google Scholar

[6] Peter T., Plonaka G., A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators, Inverse Problems, 2013, 29, 025001. 10.1088/0266-5611/29/2/025001Search in Google Scholar

[7] Platte R.B., Trefethen L.N., Kuijlaars A.B.J., Impossibility of fast stable approximation of analytic functions from equispaced samples, SIAM Review, 2011, 53, 308–314. 10.1137/090774707Search in Google Scholar

[8] Ragulskis M., Lukoseviciute K., Navickas Z., Palivonaite R., Short-term time series forecasting based on the identification of skeleton algebraic sequences, Neurocomputing, 2011, 64, 1735–1747. 10.1016/j.neucom.2011.02.017Search in Google Scholar

[9] Runge C., Uber empirische Funktionen and die Interpolation zwischen aquidistanten Ordinaten, Z. Math. Phys., 1901, 46 224– 243. Search in Google Scholar

[10] Salzer H.E., Lagrangian interpolation at the Chebyshev points xn;υ = cos(υπ/n), υ = 0(1)n; some unnoted advantages, Computer J., 1972, 15, 156–159. Search in Google Scholar

[11] Schonhage A., Fehlerfortpflanzung bei Interpolation, Numer. Math., 1961, 3, 62–71. 10.1007/BF01386001Search in Google Scholar

[12] Trefethen L.N., Pachon R., Platte R.B., Driscoll T.A., Chebfun Version 2,, Oxford University, 2008. Search in Google Scholar

[13] Turetskii A.H., The bounding of polynomials prescribed at equally distributed points, Proc. Pedag. Inst. CityplaceVitebsk, 1940, 3, 117–127. Search in Google Scholar

[14] Osborne M.R., Smyth G.K., A Modified Prony Algorithm For Exponential Function Fitting, SIAM Journal of Scientific Computing, 1995, 16, 119–138. 10.1137/0916008Search in Google Scholar

[15] Martin C., Miller J., Pearce K., Numerical solution of positive sum exponential equations, Applied Mathematics and Computation, 1989, 34, 89–93. 10.1016/0096-3003(89)90008-8Search in Google Scholar

[16] Fuite J., Marsh R.E., Tuszynski J.A., An application of Prony’s sum of exponentials method to pharmacokinetic data analysis, Commun. Comput. Phys., 2007, 2, 87–98. Search in Google Scholar

[17] Giesbrecht M., Labahn G., Wen-shin Lee, Symbolic-numeric sparse interpolation of multivariate polynomials, Journal of Symbolic Computation, 2009, 44, 943–959. 10.1016/j.jsc.2008.11.003Search in Google Scholar

[18] Steedly W., Ying C.J., Moses O.L., A modified TLS-Prony method using data decimation, IEEE Transactions on Signal Processing, 1992, 42, 2292–2303. 10.1109/78.317852Search in Google Scholar

[19] Kurakin V.L., Kuzmin A.S., Mikhalev A.V., Nechavev A.A., Linear recurring sequneces over rings and modules, Journal of Mathematical Sciences, 1995, 76, 2793–2915. 10.1007/BF02362772Search in Google Scholar

[20] Kurakin V., Linear complexity of polinear sequences, Disctrete Math. Appl., 2001, 11, 1–51. 10.1515/dma.2001.11.1.1Search in Google Scholar

[21] Potts D., Tasche M., Parameter estimation for multivariate exponential sums, Electron. Trans. Numer. Anal., 2013, 40, 204–224. Search in Google Scholar

[22] Kaltofen E., Villard G., On the complexity of computing determinants, Computers Mathematics Proc. Fifth Asian Symposium (ASCM 2001), Lecture Notes Series on Computing, 2001, 9, 13–27. 10.1142/9789812799661_0002Search in Google Scholar

[23] Kaw A., Egwu K., Numerical Methods with Applications, Textbooks collection Book 11, 2010, ch. 5. Search in Google Scholar

Received: 2014-5-29
Accepted: 2015-4-9
Published Online: 2015-5-21

©2015 Dovile Karalienė et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.2.2024 from
Scroll to top button