Abstract
It is proved that the space of solutions of the Dirichlet problem for the harmonic functions in the unit disk with nontangential boundary limits 0 a.e. has the infinite dimension.
References
[1] Dovgoshey O., Martio O., Ryazanov V., Vuorinen M. The Cantor function, Expo. Math., 2006, 24, 1-37 10.1016/j.exmath.2005.05.002Search in Google Scholar
[2] Efimushkin A., Ryazanov V. On the Riemann-Hilbert problem for the Beltrami equations, Contemporary Mathematics (to appear), see also preprint http://arxiv.org/abs/1402.1111v3 [math.CV] 30 July 2014, 1-25 Search in Google Scholar
[3] Garnett J.B., Marshall D.E. Harmonic Measure, Cambridge Univ. Press, Cambridge, 2005 10.1017/CBO9780511546617Search in Google Scholar
[4] Gehring F.W., On the Dirichlet problem, Michigan Math. J., 1955-1956, 3, 201 10.1307/mmj/1028990037Search in Google Scholar
[5] Goluzin G.M., Geometric theory of functions of a complex variable, Transl. of Math. Monographs, 26, American Mathematical Society, Providence, R.I., 1969 10.1090/mmono/026Search in Google Scholar
[6] Koosis P., Introduction to Hp spaces, 2nd ed., Cambridge Tracts in Mathematics, 115, Cambridge Univ. Press, Cambridge, 1998 Search in Google Scholar
[7] Ryazanov V., On the Riemann-Hilbert Problem without Index, Ann. Univ. Bucharest, Ser. Math. 2014, 5, 169-178 Search in Google Scholar
©2015 Vladimir Ryazanov
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.