Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access June 1, 2015

Some identities of degenerate special polynomials

  • Dae San Kim and Taekyun Kim
From the journal Open Mathematics

Abstract

In this paper, by considering higher-order degenerate Bernoulli and Euler polynomials which were introduced by Carlitz, we investigate some properties of mixed-type of those polynomials. In particular, we give some identities of mixed-type degenerate special polynomials which are derived from the fermionic integrals on Zp and the bosonic integrals on Zp.

References

[1] Araci, S., Acikgoz, M., A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials., Adv. Stud. Contemp. Math. (Kyungshang), 2012, 22(3), 399–406. Search in Google Scholar

[2] Bayad A., Chikhi J., Apostol-Euler polynomials and asymptotics for negative binomial reciprocals., Adv. Stud. Contemp. Math. (Kyungshang), 2014, 24(1), 33–37. Search in Google Scholar

[3] Carlitz L., Degenerate Stirling, Bernoulli and Eulerian numbers., Utilitas Math., 1979, 15, 51–88. Search in Google Scholar

[4] Ding D., Yang J., Some identities related to the Apostol-Euler and Apostol-Bernoulli polynomials., Adv. Stud. Contemp. Math. (Kyungshang), 2010, 20(1), 7–21. Search in Google Scholar

[5] Gaboury S., Tremblay R., Fugère B.-J., Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials., Proc. Jangjeon Math. Soc., 2014, 17(1), 115–123. Search in Google Scholar

[6] He Y., Zhang W., A convolution formula for Bernoulli polynomials., Ars Combin., 2013, 108, 97–104. Search in Google Scholar

[7] Jeong J.-H., Jin J.-H., Park J.-W., Rim S.-H., On the twisted weak q-Euler numbers and polynomials with weight 0., Proc. Jangjeon Math. Soc., 2013, 16(2), 157–163. Search in Google Scholar

[8] Jolany H., and Darafsheh M. R., Some other remarks on the generalization of Bernoulli and Euler numbers., Sci. Magna, 2009, 5(3), 118–129. Search in Google Scholar

[9] Kim D. S., and Kim T., Higher-order Degenerate Euler Polynomials., Applied Mathematical Sciences, 2015, 9(2), 57–73. 10.12988/ams.2015.4121007Search in Google Scholar

[10] Kim D. S., Kim T., Komatsu T., and Lee S.-H., Barnes-type Daehee of the first kind and poly-Cauchy of the first kind mixed-type polynomials., Adv. Difference Equ., 2014, 2014:140, pp 22. 10.1186/1687-1847-2014-140Search in Google Scholar

[11] Kim T., q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients., Russ. J. Math. Phys., 2008, 15(1), 51–57. 10.1134/S1061920808010068Search in Google Scholar

[12] Kim T., Symmetry p-adic invariant integral on Zp for Bernoulli and Euler polynomials., J. Difference Equ. Appl., 2008, 14(12), 1267–1277. 10.1080/10236190801943220Search in Google Scholar

[13] Kim T., Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral on Zp., Russ. J. Math. Phys., 2009, 16(1), 93–96. 10.1134/S1061920809010063Search in Google Scholar

[14] Luo Q.-M., Qi F., Relationships between generalized Bernoulli numbers and polynomials and generalized Euler numbers and polynomials., Adv. Stud. Contemp. Math. (Kyungshang), 2013, 7(1), 11–18. Search in Google Scholar

[15] Ozden H., q-Dirichlet type L-functions with weight α., Adv. Difference Equ., 2013, 2013:40, pp 5. 10.1186/1687-1847-2013-40Search in Google Scholar

[16] Ozden H., Cangul, I. N., Simsek Y., Remarks on q-Bernoulli numbers associated with Daehee numbers., Adv. Stud. Contemp. Math. (Kyungshang), 2009, 18(1), 41–48. Search in Google Scholar

[17] Park J.-W., New approach to q-Bernoulli polynomials with weight or weak weight., Adv. Stud. Contemp. Math. (Kyungshang), 2014, 24(1), 39–44. Search in Google Scholar

[18] Roman, S., The umbral calculus, vol. 111 of Pure and Applied Mathematics., Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984. Search in Google Scholar

[19] Ryoo C. S., Song H., and Agarwal R. P., On the roots of the q-analogue of Euler-Barnes’ polynomials., Adv. Stud. Contemp. Math. (Kyungshang), 2004, 9(2), 153–163. Search in Google Scholar

[20] S¸ en E., Theorems on Apostol-Euler polynomials of higher order arising from Euler basis., Adv. Stud. Contemp. Math. (Kyungshang), 2013, 23(2), 337–345. Search in Google Scholar

[21] Simsek Y., Interpolation functions of the Eulerian type polynomials and numbers., Adv. Stud. Contemp. Math. (Kyungshang), 2013, 23(2), 301–307. 10.1186/1687-1812-2013-87Search in Google Scholar

[22] Volkenborn A., Ein P-adisches Integral und seine Anwendungen. I., Manuscripta Math., 1972, 7, 341–373. 10.1007/BF01644073Search in Google Scholar

[23] Volkenborn A., Ein p-adisches Integral und seine Anwendungen. II., Manuscripta Math. 1974, 12, 17–46. Search in Google Scholar

[24] Zhang Z., and Yang H., Some closed formulas for generalized Bernoulli-Euler numbers and polynomials., Proc. Jangjeon Math. Soc., 2008, 11(2), 191–198. Search in Google Scholar

Received: 2015-1-13
Accepted: 2015-5-15
Published Online: 2015-6-1

©2015 Dae San Kim and Taekyun Kim

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.2.2024 from https://www.degruyter.com/document/doi/10.1515/math-2015-0037/html
Scroll to top button