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Abstract: The aim of this paper is to study the solvability of the problem8̂̂<̂
:̂
.��/su D F.x; u/ WD �

f .x/

u
CMup in �;

u > 0 in �;
u D 0 in RN n�;

where � is a bounded smooth domain of RN , N > 2s, M 2 f0; 1g, 0 < s < 1,  > 0, � > 0, p > 1 and f is a
nonnegative function. We distinguish two cases:
– For M D 0, we prove the existence of a solution for every  > 0 and � > 0.
– ForM D 1, we consider f � 1 and we find a thresholdƒ such that there exists a solution for every 0 < � < ƒ,

and there does not for � > ƒ.
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1 Motivation and organization of the paper

In this paper we study the existence, regularity and multiplicity of solutions of the following nonlocal problem

.P/ D

8̂̂<̂
:̂
.��/su D F.x; u/ WD �

f .x/

u
CMup in �;

u > 0 in �;
u D 0 in RN n�:

where � is a bounded smooth domain of RN , N > 2s, M 2 f0; 1g, 0 < s < 1,  > 0, � > 0, p > 1, and f is a
nonnegative function that belongs to some Lm.�/, m � 1. In this context, .��/s is the fractional Laplace operator
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defined, up to a normalization factor, by the Riesz potential as

�.��/su.x/ WD P:V:

Z
RN

u.x C y/C u.x � y/ � 2u.x/

yNC2s
dy; x 2 RN

when s 2 .0; 1/ is a fixed parameter (see for example [16, 24, 33]).
Such elliptic problems with a singular nonlinearity have a large history in the local case, that is, with a principal

part of Laplacian type. The seminal paper by Crandall, Rabinowitz and Tartar [13] is the starting point of a large
literature, see for instance [3, 4, 7, 8, 12, 14, 19, 21, 23, 25, 26, 34, 35]. The philosophy to deal with this framework
is similar to the one used for problems with a concave or a concave-convex nonlinearity. See for instance the papers
[1, 9, 10, 17, 18] and their corresponding references.

In this work we deal with two problems:

.P / D

8̂̂<̂
:̂
.��/su D �

f .x/

u
in �;

u > 0 in �;
u D 0 in RN n�;

and

.D�;;p/ D

8̂̂<̂
:̂
.��/su D

�

u
C up in �;

u > 0 in �;
u D 0 in RN n�:

Problem .P / is strongly inspired by the following semilinear elliptic problem with a singular nonlinearity (see [7])

.L1/ D

8̂̂<̂
:̂
��u D

f .x/

u
in �;

u > 0 in �;
u D 0 in @�;

where � is a bounded open subset of RN , N � 2,  > 0 is a real number and f is a nonnegative function that
belongs to some Lebesgue space. The singular problem .L1/ appears by considering problems with a convection
term via a change of variable, that is, this problem is related to singular problems with a term depending on jrvj2.
See for instance the references [19, 35].

In [7], the authors study existence and regularity results of the solutions to problem .L1/, depending on 
(splitting in the cases  D 1,  > 1 and  < 1) and on the summability of f . Our aim will be to prove, using
similar techniques as in the local case, this kind of results for the nonlocal framework. In particular, to study problem
.P /, we will work by approximation, that is, analyzing the problems obtained truncating the singular term 1

u
and

the datum f , so that the first one becomes non singular at the origin and the second one belongs to L1.�/ (see
[7, 8] in the local setting). It is worthy to point out that the solvability results obtained for problem .P / when
s D 1, have been recently extended by D. Giachetti, P. Martinez Aparicio and F. Murat (personal communication),
to nonlinearities f .x; u/ where f is a function verifying

0 � f .x; u/ � g.x/.1C
1

u
/;

that is, without the monotonicity assumption. This kind of results can be also extended to the non-local framework.
We omit the details.

Regarding problem .D�;;p/, the motivation arises from the following semilinear problem, whose nonlinearity
combines a singular term and a convex one

.L2/ D

8̂̂<̂
:̂
��u D

�

u
C up in �;

u > 0 in �;
u D 0 in @�;

where  , p and � are positive numbers (see, among other papers, [3, 4, 8, 12, 14, 21, 35] for an extensive analysis
of this kind of problems). The multiplicity behavior in this case is essentially the same as in concave-convex type
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problems. Firstly, the approach of [9] based on the use of sub/supersolutions method still works in this context (see
also [5, 6] where this monotonicity techniques are applied in the nonlocal framework). Then, as in [3], we are also
able to show, with some technical variations, the existence of a second solution for the problem .D�;;p/ when we
add a convex term if � > 0 is small enough. More precisely, we prove the existence of a first solution for  > 0,
p > 1, up to some threshold on �, ƒ, considering the approximating problems corresponding to .D�;;p/, by
applying the sub/supersolutions and Sattinger methods.

When we consider the subcritical case, that is, 0 <  < 1 and 1 < p < 2�s � 1 D
NC2s
N�2s

, we can show
that for 0 < � small enough the problem .D�;;p/ has indeed two positive energy solutions, obtained by means of
variational techniques: the first one by minimization and the second one by the Mountain Pass Lemma (see [2, 20]).
As far as we know, the global multiplicity result, that is, the proof of the existence of a second positive solution in
the whole range until the threshold ƒ, remains open in the nonlocal setting.

The paper is organized as follows: in Section 2, an introduction of the necessary functional framework is
presented, as well as the problems that will be treated, and the different type of solutions we will work with. This
distinction is related to the assumptions on the parameter of the singularity  and on the summability of f . Section 3
is devoted to prove the existence and regularity of solution of .P /. With this purpose, firstly we need to introduce
and analyze the associated approximating problems.

Finally, in Section 4 we deal with problem .D�;;p/. The goal of this part of the work is to prove the existence
of at least two positive solutions for some range of values of � > 0.

2 Introduction and functional setting

Consider the space

Ls WD fu W RN ! R measurable W
Z
RN

ju.x/j

.1C jxjNC2s/
dx <1g;

endowed with the natural norm

kukLs WD

Z
RN

ju.x/j

.1C jxjNC2s/
dx:

In this framework, we can calculate h.��/su; 'i for every u 2 Ls and ' in the Schwartz class. Moreover, we
introduce the Sobolev space

H s.RN / D fu 2 L2.RN / W j�js Ou 2 L2.RN /g;

and the space Xs
0
.�/, defined as

Xs0.�/ D fu 2 H
s.RN / with u D 0 a.e. in RN n�g;

endowed with the norm

kukXs0.�/ D

0B@Z
Q

ju.x/ � u.y/j2

jx � yjNC2s
dx dy

1CA
1=2

;

whereQ D R2N n .C�� C�/. This space allows us to deal with problems proposed in a bounded domain�, as we
need. The pair .Xs

0
.�/; k � kXs0.�// yields a Hilbert space (see [29, Lemma 7] for more details). Moreover, it can be

seen that
.��/s W Xs0.�/! X�s.�/

is a continuous operator.
In what follows we will use the relation between the norm in the spaceXs

0
.�/ and the L2 norm of the fractional

Laplacian, see [16, Proposition 3.6],

kuk2
Xs0.�/

D 2C.N; s/�1k.��/s=2uk2
L2.RN / where C.N; s/ D

4s�
�
N
2
C s

�
��

N
2 �.�s/

: (1)
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Here C.N; s/ is a normalization constant, that appears in the definition of .��/s , see [16, 31], chosen to guarantee
that

2.��/su.�/ D j�j2sbu.�/; � 2 RN :

We will also need to make use of the classical Sobolev Theorem:

Theorem 2.1. (see for instance [16, Theorem 6.5]) Let s 2 .0; 1/ and N > 2s. There exists a constant S.N; s/ such
that, for any measurable and compactly supported function f W RN ! R, we have

kf k2
L2
�
s .RN /

� S.N; s/

Z
RN

Z
RN

jf .x/ � f .y/j2

jx � yjNC2s
dx dy;

being

2�s D
2N

N � 2s

the Sobolev critical exponent.

It is easy to check that for u and ' smooth enough, with vanishing condition outside�, we have the following duality
product,

2C.N; s/�1
Z
RN

u.��/s' dx D

Z
Q

.u.x/ � u.y//.'.x/ � '.y//

jx � yjNC2s
dx dy; (2)

what means that .��/s is selfadjoint in Xs
0
.�/.

Before stating the results contained in this work, we need to precise the sense of solutions that we will handle
here. In particular, if we consider the general problem

.D/

8̂̂<̂
:̂
.��/su D F.x; u/ in �;

u > 0 in �;

u D 0 in RN n�;

we will distinguish two types of solutions, attending to the regularity of F and u. Indeed,

Definition 2.2. We say that u 2 Xs
0
.�/ is a positive energy supersolution (respectively subsolution) of problem .D/

if F 2 L.2
�
s /
0

loc
.�/ and

C.N; s/

2

“
Q

.u.x/ � u.y//.'.x/ � '.y//

jx � yjNC2s
dx dy � .�/

Z
�

F.x; u/'.x/ dx; (3)

for every nonnegative ' 2 Xs
0
.�/ with compact support contained in �.

If u is a supersolution and a subsolution of .D/, we say that it is a positive energy solution.

Analogously, when we have less regularity on u, we will make use of a weaker notion of solution. Define first the set

T WD f� W RN ! R measurable s.t. .��/s� D ' 2 L1.�/; � D 0 on RN n e�; e� �� �g:
Notice that every � 2 T belongs in particular to L1.�/ (see [27]).

Definition 2.3. We say that u 2 L1.�/ is a positive weak supersolution (respectively subsolution) of problem .D/

if F 2 L1
loc
.�/, u D 0 in RN n� andZ

�

u.��/s� dx � .�/

Z
�

F.x; u/�.x/ dx; (4)

for every nonnegative � 2 T .
We say that u is a positive weak solution of problem .D/ if it is at the same time a supersolution and a subsolution

of such a problem.



394 B. Barrios et al.

Notice that, due to the singular term in (P), only by asking u 2 Xs
0
.�/ we cannot expect F.x; u/ to belong to

L.2
�
s /
0

.�/ in the first case, or F.x; u/ 2 L1.�/ if u 2 L1.�/ in the second one. Thus, the right hand side is not
well defined if we test in the natural spaces Xs

0
.�/ and T with functions supported in � respectively. To deal with

this difficulty we restrict our test sets to the functions with compact support.

Remark 2.4. If F 2 L.2
�
s /
0

.�/ in .D/, we can extend Definition 2.2, saying that (3) holds for every ' 2 Xs
0
.�/.

This will be the case of the approximating problems,8̂̂̂<̂
ˆ̂:
.��/sun D Fn.x; un/ WD �

min.f .x/; n/�
un C

1
n

� CMu
p
n in �;

un > 0 in �;
un D 0 in RN n�;

that we will use to build solutions of .P/. Notice that here the first term in the right hand side is no longer singular
(it is bounded indeed), so we do not need to restrict our test set to functions compactly supported in �.

3 Solvability of the elliptic problem with the singular nonlinearity

Let � be a bounded domain in RN . We consider the following problem

.P / D

8̂̂<̂
:̂
.��/su D �

f .x/

u
in �;

u > 0 in �;
u D 0 in RN n�;

where N > 2s, 0 < s < 1,  > 0, � > 0 and f is a nonnegative function whose summability conditions will be
specified later. By a rescaling argument is sufficient to consider � D 1.

3.1 Approximating problems

In order to study the solvability of problem .P /, we will analyze the associated approximating problems. Indeed,
suppose f 2 L1.�/, f � 0, and for every n 2 N, let us define

fn WD min.f .x/; n/;

and consider the problem

.Pn; / D

8̂̂̂<̂
ˆ̂:
.��/sun D

fn�
un C

1
n

� in �;

un > 0 in �;
un D 0 in RN n�:

First, we prove the existence of solution to this problem.

Lemma 3.1. Problem .Pn; / has a nonnegative solution un 2 Xs0.�/ \ L
1.�/.

Proof. Fix n 2 N. Let v 2 L2.�/, and define w D S.v/ to be the unique solution of the problem8̂̂̂<̂
ˆ̂:
.��/sw D

fn�
vC C 1

n

� in �;

w > 0 in �;
w D 0 in RN n�:

(5)
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Notice that the existence and uniqueness of solution to this problem is given by the Lax-Milgram Theorem, since the
right hand side belongs to the dual space X�s.�/. Testing now in (5) with w, we get

C.N; s/

2

Z
Q

.w.x/ � w.y//2

jx � yjNC2s
dx dy D

Z
�

fnw�
vC C 1

n

� � nC1kwkL1.�/; (6)

and thus, by the Sobolev embedding given in Theorem 2.1, it follows that

kwkXs0.�/ � Cn
C1; (7)

with C D C.N; s;�/ independent of v, so that the ball of radius CnC1 is invariant under S in Xs
0
.�/. In order to

apply the Schauder’s Fixed Point Theorem over S to guarantee the existence of a solution of .Pn; /, apart from the
invariance, we need to check the continuity and compactness of S as an operator from Xs

0
.�/ to Xs

0
.�/.

First, we prove the continuity. In order to do this, we want to check that, if we denote wk WD S.vk/ and
w WD S.v/, then

lim
k!1

kwk � wkXs0.�/ D 0 whenever lim
k!1

kvk � vkXs0.�/ D 0: (8)

Notice that from the convergence of vk in Xs
0
.�/, by Theorem 2.1 we obtain

vk ! v in L2
�
s .�/;

vk ! v a.e. in �:
(9)

In fact, let fvkgk2N be a sequence in Xs
0
.�/ converging to v 2 Xs

0
.�/. Thus we get

C.N; s/

2
kwk � wk

2
Xs0.�/

�

Z
�

0B@ fn�
vC
k
C
1
n

� � fn�
vC C 1

n

�
1CA .wk � w/ dx

�kwk � wkL2
�
s .�/

0BB@Z
�

0B@ fn�
vC
k
C
1
n

� � fn�
vC C 1

n

�
1CA
.2�s /

0

dx

1CCA
1=.2�s /

0

;

(10)

where .2�s /
0 D

2N
NC2s

< 2�s . Thus, by Hölder’s inequality and Theorem 2.1 again, we obtain

kwk � wkXs0.�/ �C.N; s; n;�/

0BB@Z
�

0B@ fn�
vC
k
C
1
n

� � fn�
vC C 1

n

�
1CA
2�s

dx

1CCA
1=2�s

:

Now we observe that both

fn�
vC
k
C
1
n

� � nC1 and
fn�

vC C 1
n

� � nC1;
and therefore, by the Dominated Convergence Theorem and (9), we conclude that

kwk � wkXs0.�/ ! 0 as k !1;

and hence, S is continuous from Xs
0
.�/ to Xs

0
.�/.

To see that S is compact, we take a sequence fvkgk2N such that kvkkXs0.�/ � C . Therefore, by Rellich-
Kondrachov Theorem (see [16, Theorem 7.1]) we conclude that, up to a subsequence,

vk * v in Xs0.�/;

vk ! v in Lr .�/; 1 � r < 2�s :
(11)

Furthermore, since S is continuous,
kS.vk/kXs0.�/ � C;
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with C a positive constant independent of k, and hence,

S.vk/ * Qw in Xs0.�/;

S.vk/! Qw in Lr .�/; 1 � r < 2�s :
(12)

Because of the continuity of S , necessarily Qw D S.v/. Thus, proceeding as in (10) one can reach

C.N; s/

2
kS.vk/ � S.v/k

2
Xs0.�/

� kS.vk/ � S.v/kL2.�/

0BB@Z
�

0B@ fn�
vC
k
C
1
n

� � fn�
vC C 1

n

�
1CA
2

dx

1CCA
1=2

;

and by (12) we conclude
lim
k!1

kS.vk/ � S.v/kXs0.�/ D 0;

and therefore S is compact from Xs
0
.�/ to Xs

0
.�/.

Given these conditions on S , Schauder’s Fixed Point Theorem provides the existence of un 2 Xs0.�/ such that
un D S.un/, i.e. un solves 8̂<̂

:
.��/sun D

fn�
uCn C

1
n

� in �;

un D 0 in RN n�:
(13)

By the weak maximum principle ([31] and [6, Lemma 2.1]), un � 0, and hence un solves .Pn; /. Finally, since the
right hand side of .Pn; / belongs to L1.�/, by [27] we also get that un 2 L1.�/.

Moreover, we can prove the following result,

Lemma 3.2. fungn2N is an increasing sequence, un > 0 in �, and for every set Q� �� � there exists a positive
constant c Q�, independent of n, such that

un.x/ � c Q� > 0; for every x 2 � and every n 2 N. (14)

Proof. Consider the problem satisfied by un and unC1 and substracting them we get:

.��/s.un � unC1/ D
fn

.un C
1
n
/
�

fnC1

.unC1 C
1
nC1

/

�
fnC1

.un C
1
nC1

/
�

fnC1

.unC1 C
1
nC1

/

D fnC1
.unC1 C

1
nC1

/ � .un C
1
nC1

/

.un C
1
nC1

/ .unC1 C
1
nC1

/
:

Now we choose, in the problems satisfied by un � unC1, .un � unC1/C as test function. Since�
.unC1 C

1

nC 1
/ � .un C

1

nC 1
/
�
.un � unC1/

C
� 0;

fnC1 � 0, and , by [27],Z
RN

.��/s.un � unC1/.un � unC1/
C
�

Z
RN

j.��/s=2.un � unC1/
C
j
2
� 0;

we have,

0 �
C.N; s/

2
k.un � unC1/

C
k
2
Xs0.�/

� 0:

Therefore un � unC1.
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On the other hand, from Lemma 3.1 we know that u1 belongs to L1.�/, that is, ku1kL1.�/ � C , and thus,

.��/su1 D
f1

.u1 C 1/
�

f1

.ku1kL1.�/ C 1/
�

f1

.C C 1/
:

Once again, since
f1

.C C 1/
is not identically zero, a further use of the Strong Maximum Principle ([31]) gives us

that u1 > 0 in � and hence, since fung is an increasing sequence, un verifies (14), for every n � 1.

Corollary 3.3. The solution un to problem .Pn; / is unique.

Proof. Let us consider vn ¤ un a solution of .Pn; /. Taking .un � vn/C (.vn � un/C resp.) as a test function in
.Pn; /, we conclude vn � un (un � vn resp.), and the uniqueness follows. See [10] for more details and general
results.

Now, the goal is passing to the limit in the sequence fungn2N to achieve a solution of .P /. With this purpose, we
must distinguish three cases, attending to the value of the power  .

3.2 Case  � 1

Lemma 3.4. Let un be the solution of the problem .Pn; /. Then,
– if  D 1 and f 2 L1.�/, or

– if  < 1 and f belongs to Lm.�/ with m D 2N
NC2sC.N�2s/

D

�
2�s
1�

�0
> 1,

un is uniformly bounded in Xs
0
.�/.

Proof. Let us first consider the case  D 1. Taking un as a test function in .Pn; /, just by noticing that
un

un C
1
n

� 1,

one gets,
C.N; s/

2
kunk

2
Xs0.�/

D

Z
�

fnun

un C
1
n

�

Z
�

f < C1;

that is, kunkXs0.�/ � C , with C independent of n.
In the case  < 1 taking again un as a test function in .Pn; /, by Theorem 2.1 and Hölder inequality, we get

C.N; s/

2
kunk

2
Xs0.�/

�

Z
�

f u1�n � kf kLm.�/

0@Z
�

u
2�s
n

1A 1
m0

� S.N; s/kf kLm.�/kunk
2�s
m0

Xs0.�/
: (15)

Since 2

2�s
> 1
m0

, we get an uniform estimate of un in the space Xs
0
.�/, as desired.

Theorem 3.5. Let f 2 L.2
�
s /
0

.�/ and  � 1. Then there exists an energy solution u 2 Xs
0
.�/ of problem .P /.

Proof. First of all, notice that

.2�s /
0
D

2N

N C 2s
�

2N

N C 2s C .N � 2s/
D

�
2�s
1 � 

�0
> 1:

Therefore, for both cases  D 1 and  < 1, since, by Lemma 3.4, un is bounded in the Hilbert space Xs
0
.�/, un

weakly converges to u in Xs
0
.�/. Therefore we are able to pass to the limit in the left hand side of .Pn; /, that is,

lim
n!1

Z
Q

.un.x/ � un.y//.'.x/ � '.y//

jx � yjNC2s
dx dy D

Z
Q

.u.x/ � u.y//.'.x/ � '.y//

jx � yjNC2s
dx dy; ' 2 Xs0.�/:

In the right hand side we observe that, for every ' 2 H s.RN / with supp.'/ D ! �� �, since f 2 L.2
�
s /
0

.�/, we
have

0 �

ˇ̌̌̌
ˇ fn'�
un C

1
n

�
ˇ̌̌̌
ˇ � j'jjf jc


!

2 L1.�/:
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Therefore, by the Dominated Convergence Theorem we get

lim
n!1

Z
�

fn'�
un C

1
n

� D Z
�

f '

u
:

3.3 Case  > 1

Lemma 3.6. Let f 2 L1.�/ and let un be the solution of problem .Pn; / for  > 1. Then, u
C1
2
n is uniformly

bounded in Xs
0
.�/.

Proof. Let be T > 1. We consider, for ˇ > 1, the convex function ˆˇ W Œ0;C1/! Œ0;C1/ defined as

ˆˇ.r/ WD

(
rˇ if 0 � r < T;

ˇT ˇ�1r � .ˇ � 1/T ˇ if r � T > 1:
(16)

Let us take ˇ D C1
2

> 1 and we call ˆ.r/ WD ˆ C1
2

.r/. Since ˆ.r/ is a Lipschitz (with constant Lˆ.r/ D
C1
2
T
�1
2 ), then ˆ.r/ and ˆ.r/ˆ0.r/ belong to Xs

0
.�/. Using [27, Proposition 2.4], we have

.��/sˆ.un/ � ˆ
0.un/.��/

sun: (17)

Therefore Z
RN

ˆ.un/.��/
sˆ.un/ �

Z
RN

ˆ0.un/ˆ.un/.��/
sun D

Z
�

f�
un C

1
n

� ˆ0.un/ˆ.un/: (18)

Since ˆ0.un/ˆ.un/ � C1
2
u

n , from (18) it follows that

C.N; s/

2
kˆ.un/k

2
Xs0.�/

�
. C 1/

2
kf kL1.�/ � C;

where C > 0 is independent of n. Letting T !C1 we conclude.

Theorem 3.7. Let f 2 L1.�/ and  > 1. Then there exists a weak solution u of problem .P /. Moreover, u
C1
2 2

Xs
0
.�/.

Proof. Consider the sequence fungn2N of solutions to the problem .Pn; /. By Lemma 3.2 we know that this
sequence is increasing, and thus we can define u WD limn!1 un. Hence, due to the weak lower semicontinuity
of the norm, by Lemma 3.6 we obtain

ku
C1
2 kXs0.�/

� lim inf
n!1

ku
C1
2
n kXs0.�/

� C;

with C a positive constant independent of n, i.e., u
C1
2 2 Xs

0
.�/. Moreover, by the Sobolev embedding this implies

u
C1
2 2 L2

�
s .�/ and, since C1

2
2�s > 1, in particular u 2 L1.�/. Thus, for every � 2 T ,

lim
n!1

Z
�

un.��/
s� dx D

Z
�

u.��/s� dx < C1:

Since supp.�/ DW ! �� � whether � 2 T , by Lemma 3.2 we have

0 �

ˇ̌̌̌
ˇ fn�

.un C
1
n
/

ˇ̌̌̌
ˇ � jf jj�jc


!

2 L1.�/:

Therefore, by the Dominated Convergence Theorem we can pass to the limit in the right hand side of the weak
formulation of .Pn; /, concluding the existence of a weak solution of problem .P /.
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3.4 Regularity of solutions of problem .P/

Proposition 3.8. Let f 2 L.2
�
s /
0

.�/,  � 1 and u be the solution of .P / provided by Theorem 3.5. Then u 2
L.C1/2

�
s .�/:

Proof. We begin proving the case  D 1. Following the idea given in [27, Theorem 3.10] we consider ˆˇ.r/, the
convex function defined in (16) as a test function in .Pn; /, for ˇ D 2. Doing the same as in Lemma 3.6, since
ˆ0
2
.un/ˆ2.un/ � 2u

3
n, we get thatZ

RN

ˆ2.un/.��/
sˆ2.un/ �

Z
RN

ˆ02.un/ˆ2.un/.��/
sun D

Z
�

f

un
ˆ02.un/ˆ2.un/ � 2

Z
�

f u2n: (19)

The integral in the left hand side of (19) can be estimated, by Theorem 2.1, in the following wayZ
RN

ˇ̌̌
.��/s=2ˆ2.un/

ˇ̌̌
D kˆ2.un/k

2
Xs0.�/

�
1

S.N; s/
kˆ2.un/k

2

L2
�
s .�/

D
1

S.N; s/

264 Z
fun<T g

u
2�2�s
n C

Z
fun�T g

.2T un � T
2/2
�
s

375
2

2�s

�
1

S.N; s/

264 Z
fun<T g

u
2�2�s
n C

Z
fun�T g

T 2�2
�
s

375
2

2�s

�
1

S.N; s/

264 Z
fun<T g

u
2�2�s
n Cmeasfun � T g

375
2

2�s

: (20)

Since un 2 L1.�/ then
lim

T!C1
.measfun � T g/ D 0:

Thus, from (19) and (20), we find that

ku2nk
2

L2
�
s .�/

� C.N; s/

Z
�

f u2n � C.N; s/kf kL.2
�
s /
0
.�/
ku2nkL2

�
s .�/

:

That is, by Fatou’s Lemma we conclude that u belongs to L2�2
�
s .�/.

Consider now the case  < 1. In this case we take ˆˇ.r/, defined in (16), with ˇ D  C 1, and thus, repeating
the previous argument, one gets

kuC1n k
2

L2
�
s .�/

� C.N; s/

Z
�

f u2.C1/�1�n � C.N; s/kf k
L.2
�
s /
0
.�/
kuC1n k

L2
�
s .�/

D C.N; s/kf k
L.2
�
s /
0
.�/
kuC1n k

L2
�
s .�/

:

Therefore the previous inequality and Fatou’s Lemma imply that u 2 L.C1/2
�
s .�/, as desired.

Remark 3.9. Observe that the exponent of summability . C 1/2�s coincides when s D 1 with the one given in
[7, Lemmas 3.3 and 5.5] in the local case.

The summability of the solution obtained in the previous proposition could be improved requesting more regularity to
the function f . In order to prove this result, we will adapt to the nonlocal framework the ideas given in [4, Lemma 1],
to obtain the following:
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Lemma 3.10. Let � > 0 and  > 0. If w 2 Xs
0
.�/, w > 0 in �, satisfiesZ

RN

.��/s=2w.��/s=2� dx � �

Z
�

�

w
dx for every � 2 Xs0.�/; � � 0 (21)

then there exists a constant C > 0, independent of w, such that

kwkL1.�/ � C�
1
C1 :

Proof. Let us first consider the case � D 1. For k � 1, define the function

Gk.�/ WD � �maxf�k;minfk; �gg:

Thus, testing with Gk.w/ in (21), by [27, Proposition 2.7 ii)], we get thatZ
RN

j.��/s=2Gk.w/j
2
�

Z
Ak

Gk.w/

w
�

Z
Ak

Gk.w/;

where
Ak WD fx 2 � W w.x/ > kg:

Since, from the previous inequality and Theorem 2.1, we have that

kGk.w/kL2
�
s .�/

� S.N; s/jAk j
NC2s
2N ;

using Stampacchia’s method ([32, Lemma 4.1]), we conclude that there exists a positive constant C D C.N; s/ such
that kwkL1.�/ � C:

The general case, � > 0, follows easily using that the fractional Laplacian is a linear operator. In fact, if we
consider the modified function ew D � 1

�

� 1
C1

w 2 Xs0.�/;

for every ' 2 Xs
0
.�/, we get thatZ

RN

.��/s=2ew.��/s=2' D � 1
�

� 1
C1

Z
RN

.��/s=2w.��/s=2' �

�
1

�

� 1
C1

Z
�

�'

w
D

Z
�

'ew :
That is, ew is an energy solution of the Dirichlet problem .P / with � D 1. Therefore, for the calculations done before
for the case � D 1, there exists C > 0 such that kewkL1.�/ � C: That is, kwkL1.�/ � C�

1
C1 :

Using the previous Lemma we get the next result.

Proposition 3.11. Let us consider 0 <  and let u be a solution of .P / provided by Theorems 3.5 and Theorem 3.7.
If f 2 Lm.�/ with m > N

2s
, then u 2 L1.�/.

Proof. Following the same ideas done in the proof of Lemma 3.10, applying Hölder inequality and the Stam-
pacchia’s method for the solutions un of the truncated problems .Pn;�/. That is, one proves that there exists
C D C.N; s; kf kLm.�/; j�j/ > 0 such that

kunkL1.�/ � C;

so, recalling that u WD limn!1 un we conclude.
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4 Some remarks on solvability and multiplicity of solutions
for the elliptic problem when adding a convex term

In this section, we consider the previous Dirichlet problem, but adding a convex term of the form up , with p > 1.

.D�;;p/ D

8̂̂<̂
:̂
.��/su D

�

u
C up in �;

u > 0 in �;
u D 0 in RN n�:

4.1 First solution

We will prove the following

Theorem 4.1. Assume  > 0 and p > 1. Then, there exists 0 < ƒ < 1 such that, for every 0 < � < ƒ, there
exists a positive solution u to the problem .D�;;p/ in the following sense:
– if 0 <  � 1, then u 2 Xs

0
.�/ \ L1.�/ is an energy solution;

– if  > 1, then u 2 L1.�/ is a weak solution, satisfying u
C1
2 2 Xs

0
.�/.

Proof. Step 1:
Consider the following approximated problems:

.Dn;�;;p/ D

8̂<̂
:
.��/sun D

��
uCn C

1
n

� C .uCn /p in �;

un D 0 in RN n�:

First, we prove that there exists a solution of this problem, by applying the Sattinger method.
Step 2: We construct a subsolution.

Consider the solution un 2 Xs0.�/ to the problem8̂<̂
: .��/

sun D
��

unC C
1
n

� in �;

un D 0 in RN n�;
(22)

that is constructed applying Schauder’s fixed point theorem, in the same way as the solution of problem (5). By the
maximum principle, un � 0, and thus

��
unC C

1
n

� � ��
un C

1
n

� C unp;
that is, un is a subsolution of .Dn;�;;p/.

Step 3: We find a supersolution.
Let t > �, that will be chosen later, and let 0 � un be the energy solution to the problem8̂<̂

:
.��/sun D

t�
un
C
C
1
n

� in �;

un D 0 in RN n�:
(23)

By Lemma 3.10, we know that there exists C0 > 0 such that kunkL1.�/ � C0t
1
C1 . In order to have that un is a

supersolution of .Dn;�;;p/, we need to prove that we can choose t large enough so that

t�
un C

1
n

� � ��
un C

1
n

� C unp: (24)
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But this is equivalent to

t � �C un
p

�
un C

1

n

�
;

what holds if t satisfies

t � �C .C0t
1
C1 /p

�
C0t

1
C1 C

1

n

�
:

Notice first that, since
 C p

 C 1
> 1, for � small enough one can find t > 0 satisfying

t � �C 2C
pC

0
t
Cp
C1 :

Hence, if
1

n
� C0t

1
C1 ;

(24) holds. Thus, we have proved the existence of ƒ0 > 0 such that for 0 < � < ƒ0, un is a supersolution of
problem .Dn;�;;p/.

Step 4: We prove that un � un.
We procced as in the proof of Lemma 3.2, that is, we consider the problem satisfied by un�un and we use .un�un/C

as test function. Therefore, since t > � and
1�

r C 1
n

� is decreasing for r > 0, we get that

Z
RN

.un � un/
C.��/s.un � un/ D

Z
�

 
��

un C
1
n

� � t�
un C

1
n

� ! .un � un/C
D

Z
�

 
��

un C
1
n

� � ��
un C

1
n

� ! .un � un/C
C

Z
�

 
��

un C
1
n

� � t�
un C

1
n

� ! .un � un/C
� 0: (25)

Thus, using that Z
RN

.un � un/
C.��/s.un � un/ �

Z
RN

j.��/s=2.un � un/
C
j
2
� 0;

it follows that un � un.
Step 5: Sattinger method.

Consider the function

g.r/ D
��

r C 1
n

� C rp C nC1�r; r 2 Œ0;C1/: (26)

It can be easily checked that g is an increasing function. Thus, consider un;1 2 Xs0.�/ the solution of the problem8̂<̂
:
.��/sun;1 C n

C1�un;1 D g.un/ in �;
un;1 > 0 in �;
un;1 D 0 in RN n�:

(27)

Since the added term in the left hand side is linear, it can be seen ([6, Lemma 2.1]) that the new operator satisfies a
comparison principle. Hence, using that

.��/sun C n
C1�un � g.un/ in �;

we conclude that un � un;1. Likewise, it can be proved that un;1 � un. Consider now for every k 2 N the iterated
problems 8̂<̂

:
.��/sun;kC1 C n

C1�un;kC1 D g.un;k/ in �;
un;kC1 > 0 in �;
un;kC1 D 0 in RN n�:

(28)
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Then, since g is increasing, the solutions of these problems satisfy

un � un;1 � � � � � un;k � un;kC1 � un:

Thus, we can define the pointwise limit un WD limk!1 un;k . Moreover, using un;kC1 as a test function in (28),
by Lemma 3.10, we get thatZ

RN

j.��/s=2un;kC1j
2
C nC1�

Z
�

u2n;kC1

D �

Z
�

un;kC1�
un;k C

1
n

� C Z
�

u
p

n;k
un;kC1 C n

C1�

Z
�

un;kun;kC1

� �

Z
�

nun C

Z
�

un
pC1

C nC1�

Z
�

un
2
� Cn;

where Cn is a constant dependent on n but independent of k. Hence, up to a subsequence, we can conclude that
un;k * un in Xs

0
.�/. Thus, un is an energy solution of problem .Dn;�;;p/.

Furthermore, by Lemma 3.2, since the sequence of subsolutions fungn2N is increasing with respect to n, there
exists a constant c Q� > 0, independent of n, such that

un � un � u1 � c Q� > 0; for every x 2 Q� and every n: (29)

Remark 4.2. Note that, by construction, the solution un of problem .Dn;�;;p/ is a minimal solution, that is, if fun
is another solution of .Dn;�;;p/ then un �fun.

Step 6: Regularity.
The idea now is passing to the limit in the sequence fung in order to get a solution to problem .D�;;p/. Consider
first the case  � 1. Using un 2 Xs0.�/ as a test function in the problem .Dn;�;;p/, one getsZ

RN

j.��/s=2unj
2
D �

Z
�

un�
un C

1
n

� C Z
�

upC1n � �

Z
�

u1�n C

Z
�

upC1n

� C1kunk
1�

L1.�/
C C2kunk

pC1

L1.�/
� QC ;

where, by Lemma 3.10, QC is a constant independent of n. Therefore, un is uniformly bounded in Xs
0
.�/ and, up to

a subsequence, un * u in Xs
0
.�/. Moreover, for every ' 2 Xs

0
.�/ with supp.'/ � Q� �� �, by (29), we have

that

0 �
�'�

un C
1
n

� � �'

c


Q�

2 L1.�/:

Thus, we can pass to the limit in the energy formulation of the approximated problems .Dn;�;;p/ to conclude that
u is an energy solution of .D�;;p/.

Consider now  > 1. We proceed as in the proof of Lemma 3.6, considering the Lipschitz convex function
ˆ C1

2

.r/ for r > 0, defined in (16). Therefore, by Lemma 3.10, we have that

C.N; s/

2
kˆ C1

2

.un/k
2
Xs0.�/

�

Z
RN

ˆ0C1
2

.un/ˆ C1
2

.un/.��/
sun

D

Z
�

�

.un C
1
n
/
ˆ0C1

2

.un/ˆ C1
2

.un/C

Z
�

upnˆ
0
C1
2

.un/ˆ C1
2

.un/

�
. C 1/�

2
j�j C

 C 1

2

Z
�

uCpn � C;

where C is a constant independent of n. Letting T ! C1 in the definition of ˆ C1
2

, we conclude that u
C1
2
n is

uniformly bounded in Xs
0
.�/, and thus, by the Rellich-Kondrachov Theorem (see [16, Theorem 7.1]), there exists
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u
C1
2 2 Xs

0
.�/ such that

u
C1
2
n ! u

C1
2 in Lr .�/; 8 1 � r < 2�s ;

u
C1
2
n ! u

C1
2 a.e. in �:

Notice that this is the meaning of u satisfying the boundary data. In particular, from here we deduce that un ! u

a.e. in �, and from Lemma 3.10, that u 2 L1.�/. Hence, by this convergence and (29), we can pass to the limit in
the weak formulation of .Dn;�;;p/ to getZ

RN

u.��/s� dx D �

Z
�

�

u
dx C

Z
�

up� dx;

for every � 2 T , that is, to conclude that u 2 L1.�/ is a weak solution of .Dn;�;;p/.
Step 7: We prove that ƒ < C1:

Let us define
ƒ WD supf� > 0 such that problem .D�;;p/ has a solutiong: (30)

Following the ideas of [8, Remark 2.2] we will prove the nonexistence for large �, that is, we obtain that ƒ < C1.
Let �0 �� � and consider the eigenvalue problem8̂<̂

:
.��/s'1 D �1'1 in �0;

'1 > 0 in �0;
'1 D 0 in RN n�0:

(31)

By [5, Proposition 2.2] and [30, Proposition 9] we know that 0 � '1 2 Xs0.�
0/\L1.�0/, and hence it can be used

as a test function in .D�;;p/. Moreover, since

.��/2'1.x/ � 0 D �1'1.x/; x 2 � n�
0;

it follows that
.��/s'1 � �1'1 in weak sense in �:

Let u be a solution of .D�;;p/. Then, by testing .D�;;p/ with '1 and applying the Young’s inequality, one gets
the following,

�

Z
�

'1

u
C

Z
�

up'1 � �1

Z
�

u'1 �
1

p

Z
�

up'1 C
�
p0

1

p0

Z
�

'1;

that is, Z
�

 
�

u
C
p � 1

p
up �

�
p0

1

p0

!
'1 � 0: (32)

But it can be seen that there exists

C D

�
p � 1



� 
pC

C
p � 1

p

�


p � 1

� p
pC

> 0;

such that
�

u
C
p�1
p
up � C�

p
pC , and hence, (32) implies that

Z
�

 
C�

p
pC �

�
p0

1

p0

!
'1 � 0;

which is impossible for � large enough.
Step 8: There exists at least a solution of .D�;;p/ for every 0 < � < ƒ.

In Step 5 and Step 6 we have proved the existence of solutions for 0 < � < ƒ0, where ƒ0 was small enough so that
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we could construct the supersolution of Step 3. The purpose now is to prove that indeed we can find a solution for
every 0 < � < ƒ, where ƒ was defined in (30).

Take 0 < � < ƒ. Given the definition of ƒ, we can find N� as close as we want to ƒ so that problem .D N�;;p/

has a solution u N�. In particular, taking � < N� < ƒ, it is easy to check that u N� is a supersolution of .Dn;�;;p/.
Proceeding as in Step 4, one can prove that un � u N�, where un is the subsolution of .Dn;�;;p/ constructed at Step
2. Therefore, repeating Step 5 and Step 6 using the new supersolution u N�, the result follows.

4.2 About existence of second solution

For the truncated problems .Dn;�;;p/ it is easy to check that in fact there exists at least a second solution for
every � 2 .0;ƒn/, where ƒn is the critical parameter for the existence of minimal solution for every n 2 N and
p < 2�s � 1. Notice that fƒng # ƒ as n!1.

More precisely, by means of variational techniques, one can find two different energy solutions, the first one by
minimization, and the second one by the Mountain Pass Lemma (see [2, 20]). In fact it would be natural to consider
the energy functional Jn W Xs0.�/! RN defined as

Jn.u/ D
C.N; s/

4
kuk2

Xs0.�/
�

�

1 � 

Z
�

�
uC C

1

n

�1�
�

1

p C 1

Z
�

.uC/pC1: (33)

To find the critical points of Jn, it can be used an adaptation of the ideas developed in [1] (see [5] for the details in
the non local case). Indeed, let us define the class

Cs.�/ WD
�
w 2 C0.�/ W kwkCs.�/ WD

w
ıs


L1.�/

< C1

�
;

where ıs.x/ Ddist.x; @�/. Notice that, by the Hopf Lemma (see [22, Lemma 1.2]), Cs.�/ is a natural space where
one can separate the minimal solutions (see [15]).

More precisely, let un;1 and un;2 be the minimal solutions of .Dn;�1;;p/ and .Dn;�2;;p/, with 0 < �1 < �2.
Thus, w WD un;2 � un;1 � 0. The idea now is to apply a Hopf lemma on w but, since we cannot assure that
.��/sw � 0 in �, we will apply again the idea of adding a linear term in the problem (see Step 5 in the proof
Theorem 4.1). That is, considering the increasing function g given in (26), it follows that8̂<̂

:
.��/sw C nC1�1w � g.un;2/ � g.un;1/ � 0 in �;

w � 0 in �;
w D 0 in RN n�;

Therefore, since we are under the hypotheses of [22, Lemma 1.2], we conclude that

un;2.x/ � un;1.x/ � Cı
s.x/; x 2 �:

Moreover, by Theorem 4.1, we know that the solutions to the truncated problems are bounded, and thus the right hand
side of .Dn;�;;p/ is bounded as well. Hence, by [28, Proposition 1.1] we obtain un;2 � un;1 2 Cs.�/ � Cs.�/,
and therefore the minimal solutions are separated in Cs.�/.

It is worth to remark that this strategy cannot be followed to get the second solution of .D�;;p/ for every
0 < � < ƒ because, due to the singular term, we cannot apply any bootstrapping result to reach a Hölder regularity
up to boundary.

Using the ideas in [11], one can prove that there exists a local minimum of the problem .Dn;�;;p/ in the
Cs-topology, and then that every minimum of Jn in Cs.�/ is indeed a minimum in Xs

0
.�/, separating the minimal

solutions of this problem for different �. Finally, following the ideas of [1] (see also [5]), it can be made a translation
of the truncated functional and to use the Mountain Pass Lemma, checking that the translated functional satisfies the
suitable geometry and compactness properties to prove the existence of a non-trivial critical point.

Despite the fact that we cannot apply this strategy for the non truncated problem, for p < 2�s � 1 and � small
enough a second solution can be still obtained using the Mountain Pass Theorem (see for example Section 3 of [6],
where these ideas are developed for a nonlocal concave-convex problem). The analysis of multiplicity of solutions
for the whole range 0 < � < ƒ, as far as we know, remains as an open problem.
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