Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 19, 2015

Inequality for power series with nonnegative coefficients and applications

  • Silvestru Sever Dragomir
From the journal Open Mathematics

Abstract

We establish in this paper some Jensen’s type inequalities for functions defined by power series with nonnegative coefficients. Applications for functions of selfadjoint operators on complex Hilbert spaces are provided as well.

References

[1] Agarwal R. P., Dragomir S. S., A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 59 (2010), no. 12, 3785–3812. Search in Google Scholar

[2] Cerone P., Dragomir S. S., A refinement of the Grüss inequality and applications, Tamkang J. Math. 38 (2007), No. 1, 37-49. Preprint RGMIA Res. Rep. Coll., 5 (2) (2002), Art. 14. Search in Google Scholar

[3] Cheng X.-L., Sun J., Note on the perturbed trapezoid inequality, J. Inequal. Pure & Appl. Math., 3(2) (2002), Art. 21. Search in Google Scholar

[4] Dragomir S. S., A Grüss type inequality for isotonic linear functionals and applications. Demonstratio Math. 36 (2003), no. 3, 551– 562. Preprint RGMIA Res. Rep. Coll. 5(2002), Suplement, Art. 12. [Online http://rgmia.org/v5(E).php]. 10.1515/dema-2003-0308Search in Google Scholar

[5] Dragomir S. S., Some reverses of the Jensen inequality for functions of selfadjoint operators in Hilbert spaces. J. Inequal. Appl. 2010, Art. ID 496821, 15 pp. 10.1155/2010/496821Search in Google Scholar

[6] Dragomir S. S., Reverses of the Jensen inequality in terms of the first derivative and applications, Acta Math. Vietnam. 38 (2013), no. 3, 429–446. Preprint RGMIA Res. Rep. Coll. 14 (2011), Art. 71. [http://rgmia.org/papers/v14/v14a71.pdf]. 10.1007/s40306-013-0029-9Search in Google Scholar

[7] Dragomir S. S., Some reverses of the Jensen inequality with applications, Bull. Aust. Math. Soc. 87 (2013), no. 2, 177–194. Preprint RGMIA Res. Rep. Coll. 14 (2011), Art. 72. [http://rgmia.org/papers/v14/v14a72.pdf]. 10.1017/S0004972712001098Search in Google Scholar

[8] Dragomir S. S., A refinement and a divided difference reverse of Jensen’s inequality with applications, Preprint RGMIA Res. Rep. Coll. 14 (2011), Art. 74. [http://rgmia.org/papers/v14/v14a74.pdf]. Search in Google Scholar

[9] Dragomir S. S., Ionescu N. M., Some converse of Jensen’s inequality and applications. Rev. Anal. Numér. Théor. Approx. 23 (1994), no. 1, 71–78. Search in Google Scholar

[10] Dragomir S. S., Operator Inequalities of the Jensen, Cˇ ebyšev and Grüss Type. Springer Briefs in Mathematics. Springer, New York, 2012. xii+121 pp. ISBN: 978-1-4614-1520-6 Search in Google Scholar

[11] Dragomir S. S., Operator Inequalities of Ostrowski and Trapezoidal Type. Springer Briefs in Mathematics. Springer, New York, 2012. x+112 pp. ISBN: 978-1-4614-1778-1 10.1007/978-1-4614-1779-8_3Search in Google Scholar

[12] Helmberg G., Introduction to Spectral Theory in Hilbert Space, John Wiley & Sons, Inc. -New York, 1969. Search in Google Scholar

[13] Jensen J. L. W. V., Sur les fonctions convexes et les inegalités entre les valeurs moyennes, Acta Math., 30 (1906), 175-193. 10.1007/BF02418571Search in Google Scholar

Received: 2015-7-20
Accepted: 2015-9-10
Published Online: 2015-10-19

©2015 Silvestru Sever Dragomir

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.2.2024 from https://www.degruyter.com/document/doi/10.1515/math-2015-0061/html
Scroll to top button