Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 19, 2015

Weak amenability for the second dual of Banach modules

  • Fatemeh Anousheh , Davood Ebrahimi Bagha and Abasalt Bodaghi
From the journal Open Mathematics


Let A be a Banach algebra, E be a Banach A-bimodule and Δ E → A be a bounded Banach A-bimodule homomorphism. It is shown that under some mild conditions, the weakΔ''-amenability of E'' (as an A''-bimodule) necessitates weak Δ-amenability of E (as an A-bimodule). Some examples of weak-amenable Banach modules are provided as well.


[1] Amini M., Module amenability for semigroup algebras, Semigroup Forum, 69 (2004), 243–254. Search in Google Scholar

[2] Bodaghi A., n-homomorphism amenability, Proc. Rom. Aca., Series A, 14, No. 2 (2013), 101–105. Search in Google Scholar

[3] Bodaghi A., Eshaghi Gordji M., Medghalchi A.R., A generalization of the weak amenability of Banach algebras, Banach J. Math. Anal., 3, no. 1 (2009), 131–142. Search in Google Scholar

[4] Bodaghi A., Ettefagh M., Eshaghi Gordji M., Medghalchi A.R., Module structures on iterated duals of Banach algebras, An. St. Univ. Ovidius Constanta.,18 (1) (2010), 63–80. Search in Google Scholar

[5] Dales H. G., Banach Algebras and Automatic Continuity, Clarendon Press, Oxford, 2000. Search in Google Scholar

[6] Dales H. G., Ghahramani F., Grønbæk N., Derivations into iterated duals of Banach algebras, Studia Math., 128 (1998), 19–54. Search in Google Scholar

[7] Ebrahimi Bagha D., Amini M., Amenability for Banach modules, CUBO, A Mathematical Journal, 13 (2011), 127–137. Search in Google Scholar

[8] Eshaghi Gordji M., Filali M., Weak amenability of the second dual of a Banach algebra, Studia Math., 182 (2007), 205-213. 10.4064/sm182-3-2Search in Google Scholar

[9] Ettefagh M., The third dual of a Banach algebra, Studia. Sci. Math. Hung., 45 (2008), 1–11. Search in Google Scholar

[10] Ghahramani F., Laali J., Amenability and topological centres of the scond duals of Banach algebras, Bull. Astral. Math. Soc., 65 (2002), 191–197. 10.1017/S0004972700020232Search in Google Scholar

[11] Ghahramani F., Loy R. J., Generalized notions of amenability, J. Funct. Anal., 208 (2004), 229–260. 10.1016/S0022-1236(03)00214-3Search in Google Scholar

[12] Ghahramani F., Loy R. J., Willis G. A., Amenability and weak amenability of second conjugate Banach algebaras, Proc. Amer. Math. Soc., 124 (1996), 1489–1497. 10.1090/S0002-9939-96-03177-2Search in Google Scholar

[13] Grønbæk N., Weak and cyclic amenability for non-commutative Banach algebras, Proc. Edinburgh Math. Soc., 35 (1992), 315–328. 10.1017/S0013091500005587Search in Google Scholar

[14] Johnson B. E., Cohomology of Banach algebras, Mem. Amer. Math. Soc., 127, 1972. 10.1090/memo/0127Search in Google Scholar

[15] Johnson B. J., Weak amenability of group algebras, Bull. London Math. Soc., 23 (1991), 281–284. 10.1112/blms/23.3.281Search in Google Scholar

[16] Medghalchi A. R., Yazdanpanah T., n-weak amenability and strong double limit property, Bull. Korean Math. Soc., 42 (2005), 359–367. 10.4134/BKMS.2005.42.2.359Search in Google Scholar

[17] Pym J. S., The convolution of functionals on spaces of bounded functions, Proc. London Math. Soc., 15 (1965), 84–104. Search in Google Scholar

[18] Runde V., Lectures on amenability, in: Lecture Notes in Mathematic, vol. 1774, Springer-Verlag, Berlin, 2002. Search in Google Scholar

[19] Sangani-Monfared M., Character amenability of Banach algebras, Math. Proc. Camb. Phil. Soc., 144 (2008), 697–706. 10.1017/S0305004108001126Search in Google Scholar

[20] Watanabe S., A Banach algebra which is an ideal in the second dual algebra, Sci. Rep. Niigata Univ. ser., 11 (1974), 95–101. Search in Google Scholar

Received: 2015-6-1
Accepted: 2015-8-28
Published Online: 2015-10-19

©2015 Anousheh et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.2.2024 from
Scroll to top button