Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 19, 2015

On some dicardinal functions in ditopological texture spaces

  • Kadirhan Polat and Tamer Ugur
From the journal Open Mathematics

Abstract

In the paper we show that net weight and conet weight equal each other in any complemented ditopological space, and investigate under which conditions pseudo character and copseudo character equal each other. We give some important results “bounding" the set Q of all q-sets in (a particular subclass of) the class of all ditopological texture spaces.

References

[1] Brown L.M., Ditopological fuzzy structures i, Fuzzy Syst. and AI Magazine., 1993, 3(1) Search in Google Scholar

[2] Brown L.M., Ditopological fuzzy structures ii, Fuzzy Syst. and AI Magazine., 1993, 3(2) Search in Google Scholar

[3] Brown L.M., Diker M., Paracompactness and full normality in ditopological texture spaces, J. Math. Anal. Appl., 1998, 227(1), 144-165 10.1006/jmaa.1998.6090Search in Google Scholar

[4] Brown L.M., Diker M., Ditopological texture spaces and intuitionistic sets, Fuzzy Set. Syst., 1998, 98(2), 217-224 10.1016/S0165-0114(97)00358-8Search in Google Scholar

[5] Brown L.M., Ertürk R., Fuzzy sets as texture spaces, I. Representation theorems, Fuzzy Set. Syst., 2000, 110(2), 227-235 10.1016/S0165-0114(98)00157-2Search in Google Scholar

[6] Brown L.M., Ertürk R., Fuzzy sets as texture spaces, II. Subtextures and quotient textures, Fuzzy Set. Syst., 2000, 110(2), 237-245 10.1016/S0165-0114(98)00158-4Search in Google Scholar

[7] Brown L.M., Ertürk R., Dost S., Ditopological texture spaces and fuzzy topology, I. Basic concepts, Fuzzy Set. Syst., 2004, 147(2), 171-199 10.1016/j.fss.2004.02.009Search in Google Scholar

[8] Brown L.M., Ertürk R., Dost S., Ditopological texture spaces and fuzzy topology, II. Topological considerations, Fuzzy Set. Syst., 2004, 147(2), 201-231 10.1016/j.fss.2004.02.010Search in Google Scholar

[9] Brown L.M., Ertürk R., Dost S¸ ., Ditopological texture spaces and fuzzy topology, III. Separation axioms, Fuzzy Set. Syst., 2006, 157(14), 1886-1912 10.1016/j.fss.2006.02.001Search in Google Scholar

[10] Holz M., Steffens K., Introduction to cardinal arithmetic, 2nd ed., Birkhäuser, Basel, 2010 Search in Google Scholar

[11] Juhász I., Cardinal functions in topology, MC Tracts., 1979, 34, 1-150 Search in Google Scholar

[12] Juhász I., Cardinal functions in topology-ten years later, MC Tracts., 1980, 123, 2-97 Search in Google Scholar

[13] Kunnen K., Vaughan J., Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984 Search in Google Scholar

[14] Polat K., Elmalı C.S., U˘gur T., Cardinal functions on ditopological texture spaces, Life Sci. J., 2014, 11(9), 293-297 Search in Google Scholar

[15] Yıldız F., Özça˘g S., The ditopology generated by pre-open and pre-closed sets, and submaximality in textures, Filomat., 2013, 27(1), 95-107 10.2298/FIL1301095YSearch in Google Scholar

Received: 2015-3-24
Accepted: 2015-9-23
Published Online: 2015-10-19

©2015 Polat and U˘gur

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.2.2024 from https://www.degruyter.com/document/doi/10.1515/math-2015-0064/html
Scroll to top button