Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access December 23, 2015

Fractional derivative generalization of Noether’s theorem

  • Maryam Khorshidi , Mehdi Nadjafikhah and Hossein Jafari
From the journal Open Mathematics

Abstract

The symmetry of the Bagley–Torvik equation is investigated by using the Lie group analysis method. The Bagley–Torvik equation in the sense of the Riemann–Liouville derivatives is considered. Then we prove a Noetherlike theorem for fractional Lagrangian densities with the Riemann-Liouville fractional derivative and few examples are presented as an application of the theory.

References

[1] I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, Fractional Differential Equations, Some Methods of Their Solution and Some of Their Applications, (San Diego, CA: Academic), 1999. Search in Google Scholar

[2] D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus models and numerical methods, (Series on Complexity, Nonlinearity and Chaos), World Scientific, 2012. 10.1142/8180Search in Google Scholar

[3] A.H. Bhrawy and M.A. Abdelkawy, J. Comput. Phys. 294, (2015), 462-483. 10.1016/j.jcp.2015.03.063Search in Google Scholar

[4] H. Jafari, N. Kadkhoda, D. Baleanu , Nonlinear Dynamics, Vol. 81(3) 1569-1574, (2015). 10.1007/s11071-015-2091-4Search in Google Scholar

[5] P.J. Olver, Applications of Lie groups to differential equations, Graduate Texts in Mathematics, vol. 107. Springer, New York, 1993. 10.1007/978-1-4612-4350-2Search in Google Scholar

[6] M. Nadjafikhah, V. Shirvani, J. Commun. Nonlinear Sci. Numer. Simul. 17, 14 pages (2012). 10.1016/j.cnsns.2012.02.032Search in Google Scholar

[7] A.R. Adem, B. Muatjetjeja, , Appl. Math. Lett. 48 109-117, (2015). 10.1016/j.aml.2015.03.019Search in Google Scholar

[8] R.K. Gazizov, A.A. Kasatkin, S.Yu. Lukashchuk, J. Phys. Scr. T136, 014016 (2009). 10.1088/0031-8949/2009/T136/014016Search in Google Scholar

[9] E. Noether, Math-phys. Klasse, 24 pages (1918), which originally appeared in Transport Theory and Statistical Physics, 1 (3), 25 pages (1971). 10.1080/00411457108231446Search in Google Scholar

[10] M.A. Tavel, English translation of [9], http://arxiv.org/abs/physics/0503066v1. Search in Google Scholar

[11] F. Riewe, Phys. Rev. E (3) 53 (2), 10 pages (1996). 10.1103/PhysRevE.53.1890Search in Google Scholar PubMed

[12] F. Riewe, Phys. Rev. E (3) 55 (3) (part B), 12 pages (1997). 10.1103/PhysRevE.55.3581Search in Google Scholar

[13] O.P. Agrawal, J. Math. Anal. Appl. 272 (1) 12 pages (2002). Search in Google Scholar

[14] G.S.F. Frederico, D.F.M. Torres, J. Math. Anal. Appl. 334, 13 pages (2007). Search in Google Scholar

[15] G.S.F. Frederico, D.F.M. Torres, J. Appl. Math. Comput. 217(3), 11 pages (2010). 10.1016/j.amc.2010.01.100Search in Google Scholar

[16] P.J. Torvik, R.L. Bagley, J.Applied Mechanics, Transactions of ASME, 51(2), 5 pages (1984). 10.1115/1.3167615Search in Google Scholar

[17] P.J. Torvik, R.L. Bagley, AIAA Journal, 21(5), 8 pages (1983). Search in Google Scholar

[18] M. Caputo, J. R. Astr. Soc. 13, 11 pages (1967). Search in Google Scholar

[19] S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993. Search in Google Scholar

[20] M. Nadjafikhah, F. Ahangari, J. Commu. Theor. Phys.(Beijing), 59(3), 4 pages (2013). 10.1088/0253-6102/59/3/16Search in Google Scholar

[21] E.A. Rawashdeh, J. Appl. Math. Comput. 174(2) , 8 pages (2006). Search in Google Scholar

Received: 2015-5-25
Accepted: 2015-8-8
Published Online: 2015-12-23

©2015 Khorshidi et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.2.2024 from https://www.degruyter.com/document/doi/10.1515/math-2015-0086/html
Scroll to top button