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Abstract: We obtain the global weighted Morrey-type regularity of the solution of the regular oblique derivative
problem for linear uniformly parabolic operators with VMO coefficients. We show that if the right-hand side of the
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1 Introduction

We consider the regular oblique derivative problem in generalized weighted Sobolev- Morrey space sz! 'l(p(Q, )
for linear non-divergence form parabolic equations in a cylinder

Uy —aij(x)Diju = f(x) ae.in Q,
u(x’,0) =0, on £,
du/dl =1'(x)Dju =0 on S.

The unique strong solvability of this problem was proved in [38]. In [39] Softova studied the regularity of the solution
in the Morrey spaces L?* with p € (1,00), A € (0,n + 2) and also its Holder regularity. In [41] Softova extended
these studies on generalized Morrey spaces L?-“ with a Morrey function ¢ satisfying the doubling and integral
conditions introduced in [27, 31]. The approach associated to the names of Calderén and Zygmund and developed
by Chiarenza, Frasca and Longo in [7, 8] consists of obtaining of explicit representation formula for the higher order
derivatives of the solution by singular and nonsingular integrals. Further the regularity properties of the solution
follows by the continuity properties of these integrals in the corresponding spaces. In [39] and [40] the regularity
of the corresponding operators in the Morrey and generalized Morrey spaces is studied, while in [38] we can find
the corresponding results obtained in L by [9] and [5]. In recent works there have been studied the regularity of
the solutions of elliptic and parabolic problems with Dirichlet data on the boundary in generalized Morrey spaces
M P-? with a weight ¢ satisfying (10) with w = 1 (cf. [18, 19]). Precisely, a boundedness in M 7-¢ was obtained for
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sub-linear operators generated by singular integrals as the Calderon-Zygmund. More results concerning sub-linear
operators in generalized Morrey spaces can be found in [3, 12, 40] see also the references therein.

After studying generalized Morrey spaces in detail, researchers passed to weighted Morrey spaces and
generalized weighted Morrey spaces. Recently, Komori and Shirai [23] defined the weighted Morrey spaces L?-* (w)
and studied the boundedness of some classical operators, such as the Hardy-Littlewood maximal operator or the
Calderén-Zygmund operator on these spaces. Also, Guliyev in [13] first introduced the generalized weighted Morrey
spaces M % and studied the boundedness of the sublinear operators and their higher order commutators generated
by Calderén-Zygmund operators and Riesz potentials in these spaces (see, also [15, 17]). Note that, Guliyev [13]
gave the concept of generalized weighted Morrey space which could be viewed as an extension of both M #>¢ and
L7 (w).

We call weight a positive measurable function defined on R” x R. In [29] Muckenhoupt shows that the
maximal inequality holds in weighted Lebesgue spaces Ly, if and only if the weight w satisfies the following
integral condition called parabolic Muckenhoupt condition or parabolic Ag4-condition. We say that the measurable,
nonnegative function w : R” — R satisfies the parabolic 4,-condition for ¢ € (1, 00) if

1 1 1 q—1
sgp (m[w(x,t)dxdo(m/w(x,t) q ldxdt) <A< oo (1)
z z

for all parabolic cylinders Z in R” 1. Then w(Z) means the weighted measure of Z, that is

w(Z) = /w(x,t)dxdt.

A

This measure satisfies strong and reverse doubling property. Precisely, for each 7 and each measurable subset A C Z,
there exist positive constants ¢ and 71 € (0, 1) such that

1 AN A AN

— (u) < wiA) <ci (u) , )

[wlg \ IZ] w(Z) |Z]
where ¢1 and 71 depend on n and ¢ but not on Z and A.

Throughout this paper the following notations are to be used: x = (x’,1) = (x”/,x,.1) € R*"T1, Rﬁ_—H =

{x’ e R",t > 0} and D:’_‘H ={x" eR" 1 x, >0,t>0} Dju=du/dx;, Djju= 82u/8x,~8xj, Diu=u; =
du/dt stand for the corresponding derivatives while Du = (D1u, ..., Dyu) and D?u = {D;; u};’j=1 mean the
spatial gradient and the Hessian matrix of u. For any measurable function f and 4 ¢ Rt we write

1. = A/ roray) " = o A[ F)dy

where |A| is the Lebesgue measure of A. Through all the paper the standard summation convention on repeated
upper and lower indexes is adopted. The letter C is used for various constants and may change from one occurrence
to another.

2 Definitions and statement of the problem

Let @ € R”,n > 1 be a bounded C!-!-domain, Q = Q x (0, T) be a cylinder in R'_?Ll, and S = 0Q x (0,7)
stands for the lateral boundary of Q. We consider the problem
Bu = u,—aij(x)Diju =f ae.in Q,
Ju = u(x’,0) =0, on £, 3)
By ;= du/dl =1'(x)Dju =0 on S,

under the following conditions:
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(1) The operator B is supposed to be uniformly parabolic, i.e. there exists a constant A > 0 such that for almost
allx € Q
ATHEP = aV (0EE < AlEP. YEER”,

a’ (x) = a’l (x), i,j=1,...,n.

“)

The symmetry of the coefficient matrix a = {a’/ ;’j:] implies essential boundedness of a’/’s and we set

n ..
lallcc.o = 22 lla" [loc.0-
i,j=1
(i1) The boundary operator ‘B is prescribed in terms of a directional derivative with respect to the unit vector field
I(x) = (I'(x),....I"(x)), x € S. We suppose that B is a regular oblique derivative operator, i.e., the field
is never tangential to S:

(I(x) -n(x)) = ' (x)n;(x) >0 on S, I" € Lip(S). 5)

Here Lip(S) is the class of uniformly Lipschitz continuous functions on S and n(x) stands for the unit outward
normal to 2.

In the following, besides the parabolic metric o(x) = max(|x’|, |£|'/2) and the defined by it parabolic cylinders

(x)={y eR'"T X =y | <r|t—1| <%} |T| = Cr" T2,

1
72 A 2
we use the equivalent one p(x) = (M) ? (see [9]). The balls with respect to this metric are ellipsoids

e
r2 r4

£ (x) = {y e R"TL. < 1}, & = Crit2,

Because of the equivalence of the metrics all estimates obtained over ellipsoids hold true also over parabolic cylinders
and in the following we shall use this without explicit references.

Definition 2.1 ([20, 37]). Leta € L} (R*11), denoted by

loc

1
la(R)= sup —— / \f() = fe,|dy. forevery R>0
Er.r<R |gr|£

where &, ranges over all ellipsoids in R"T!. The Banach space BMO (bounded mean oscillation) consists of
functions for which the following norm is finite

lall+« = sup n4(R) < oc.
R>0
A function a belongs to VMO (vanishing mean oscillation) with VMO- modulus 1n,(R) provided
li R) =0.
Jim na(R)

For any bounded cylinder Q we define BMO(Q) and VM O(Q) taking a € L'(Q) and O, = Q NI, instead of
&y in the definition above.

According to [1, 21] having a functiona € BMO/VMO(Q) it is possible to extend it in the whole R”? T1 preserving
its BM O-norm or VM O-modulus, respectively. In the following we use this property without explicit references.
For this goal we recall some well known properties of the BM O functions.

Lemma 2.2 (John-Nirenberg lemma, [20]). Leta € BMO and p € (1, 00). Then for any ball BB there holds

1

1
®/|a<y)—a3|"dy < C(p)lalln.
B
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As an immediate consequence of Lemma 2.2 we get the following property.
Corollary 2.3. Leta € BMO then for all 0 < 2r <t holds
t
|aB;+—llBt+| = ClallxIn-- (6)
where the constant is independent of a, x,t and r.

As mentioned before, we call weight a positive measurable function defined on R” x R.. Given a weight w and a
measurable set S we denote by
w(S) = / w(x)dx
s
the w-measure of S. A weight w belongs to the Muckenhoupt class Ap, 1 < p < oo, if

p/p
1 1 /
[w]a, = sup —/w(x) dx —/w(x)_p /P dx < 00, @
5 \ 18I |B]
B B
where % + % = 1. Note that, for any ball we have (see [11])
(Wl Csy = 1B wll /g 1™ 2l = 1. ®)

Incase p = 1, we say that w € Ay if

1
— | w(x)dx < Aess inf w(x
5 [ v < dessint o)
B
and [w]4, is the smallest A for which the above inequality holds. It is an immediate consequence of (7) that whenever
w € Ap than it satisfies the doubling property, precisely
w2B,) < C(n, p)w(B;). ©)]

The following lemma collects some of the most important properties of the Muckenhoupt weights.

Lemma 2.4 ([11]). We have the following:
(1) Ifw € Ap for some 1 < p < o0, then for all A > 1 we have

w(AB) < A" [w]4, w(B).

(2) The following equality is valid: Ass = |, <p<ocodp -
3) If w € Aso, then for all A > 1 we have

w(AB) < 2M" [l w(B).

4) Ifw € Ap for some 1 < p < oo, then there exist C > 0 and § > 0 such that for any ball B and a measurable

setS C B, s
(B) ().
(w]a, \|B| w(B) |B]
Lemma 2.5 ([30, Theorem 5]). Let w € Aoo. Then the norm of BMO(w) is equivalent to the norm of BM O(R"),
where

1
BMOM) = ta: lalow = _swp_ —ts [ 1a) = ap, oo dy <o)

Br(x)
and
1
w(Br(x))
By

agy(x).w =

/ a()w(y) dy.
(x)
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Lemma 2.6 (The John-Nirenberg inequality). Leta € BMO,
(1) there exist constants C1, Co > 0, such that for all B > 0

[{x € B: Ja(x) —ap| > B}| < C1|Ble”2#/lall v g c R";

(2) forall p € (1,00)
1 1/
lalle = € sup (- [ lay) = asl” d)'/”"
B |B|B

(3) forall p € [1,00) and w € Ao
1/p

Jalle = € sup w(lg)gfm(y)—am”w(y)dy

Definition 2.7. Let ¢(x,1) be weightin ¢ : R” xRy — Ry and w € Ap, p € [1,00). The generalized weighted

Morrey space Mp (R, w) or Mp (@) consists of all functions f € Lé,?g) (R™) such that

1/
1o = sup  gr.r)™ (@& ()" [ FO)Pop)dy) " < ool

x€R”,r>0
Er(x)
The space M P-®(Q,w) consists of LE (Q) functions provided the following norm is finite

1/
1o = _swp_ g™ (0@ [ 1f017e0y) ",

XER", r>0
Qr(x)

The generalized Sobolev-Morrey space Wzlfiw(Q, w), p € (1,00) consist of all Sobolev functions u € Wzlfl (0,w)
with distributional derivatives DfoCu € MP-%(Q,w), 0 <2l + |s| <2, endowed by the norm

||M||W2’fiw(Q,w) = lusllp.p.w:0 + Z 1D ullp,p.0:0

Is|<2

and

WY (0.0) = {u e W% (Q.0): u(x) =0, x €90},

||u||W21f~1“’(Q,w) = ||u||W21f~l“’(Q,w)

where 0Q means the parabolic boundary Q U {02 x (0, T)}.

Theorem 2.8. (Main result) Let (i) and (ii) hold,a € VMO(Q,w) and u € Wf] (Q,w), pe(l,00), w € Ap be
a strong solution of (3). If f € MP-¢(Q, w) with ¢(x, r) being measurable positive function satisfying

1
7 ess inf ¢(x, c)w(Qs(x))7
/ (14+m2)==== - e (10)
g r w(Qs(x))” §
foreach (x.r) € Q xRy, thenu € Wy1°(Q.w) and
||u||W2'f-]‘/’(Q,w) =Clflp.o.w:0 (11)

n
with C = C(n, p, [0]a,, A, 0R, T, |allcc;:0. M) and na = D 140
i,.j=1
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If o(x,r) = rA=7=2/P then MP® = L?* and the condition (10) holds with a constant depending on 7, p and
M p(x,r) = w(x,r)V/Pr=+2/P with 0 : R* 1 x Ry — Ry satisfying the conditions

w(Xp, S
57( 05) <k> VXQER’H_I, r=s
w(xp,T1)
oo

/Mds < kszw(xo,r) ki >0,i=123
N

7

IA

2r

than we obtain the spaces L7 studied in [27, 31]. The following results are obtained in [19] and treat continuity
in M P-¢(R"+1 o) of certain singular and nonsingular integrals.

Definition 2.9. A measurable function 8(x; £) : R?"T1 x R?T1\ {0} — R is called variable parabolic Calderon-
Zygmund kernel (PC ZK) if:
i) R(x;-)is a PCZK for a.a. x € R*t1;

a) R(x:-) € CR"T1\ {0}),

b) R(x:pé) = p~ TP R(x:€) Y >0,

Q) fon R(x:6)dog =0, [ |R(x:§)|dog < +o0.
ii) H DE’BR —_— < M(B) < oo for each multi-index B.

oo R T x§n

Consider the singular integrals

K f(x) = P.V. / Rxix — ) f0)dy,

Rn+l

Cla. fl(x) = P.V. / Rxix = y)la(y) —a()]f(y)dy. (12)

Rn«l»l

Theorem 2.10. For any f € MP?¢R" 1 w) with (p. ¢) as in Theorem 2.8 and a € BM O there exist constants
depending on n, p, ¢, o and the kernel such that

1
IS N p.g.wmn+t = Clolf 1f 1 p.g.mmn+1.

1
I€a. flllp.g.0mnt+1 = Clolf lallll flp.p.0mt- (13)

Corollary 2.11. Let Q be a cylinder inR""!, f € MP9(Q,w), a € BMO(Q) and &(x.£) : 0 xR\ {0} —
R. Then the operators (12) are bounded in MP-%(Q, w) with p, ¢, and w as in Theorem 2.10. Then

1
1K Np.o.wio = Cloly I fllp.g.w:0-
1
I€[a. fllp.w.w:0 = Clolg lalll flp.e.w0:0 (14)
withC = C(n, p, ¢, [®]a,. 12|, K).

Corollary 2.12. Leta € VMO and (p, ¢) be as in Theorem 2.8. Then for any € > 0 there exists a positive number
ro = ro(e, na) such that for any &, (xo) with a radius r € (0,rg) and all f € MP-?(E-(x0), w)

I€[a. flp..0:6rx0) = Cellfllp.w.w:&r(x0) (15)
where C is independent of ¢, f, r and xo.

For any x’ € R{li- and any fixed ¢ > 0 define the generalized reflection

T() = (T @)1, T) = ¥ — 20y ). (16)
an(x’,t)
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where a’’ (x) is the last row of the coefficients matrix a(x) of (3). The function 77 (x) maps R’_Zi_ into R” and the
kernel R(x; T(x)—y) = K(x; T'(x)—y’,t—1) is a nonsingular one for any x, y € ]D):'j_l . Taking X = (x”, —x5, 1)
there exist positive constants k; and k> such that

kip(X —y) = p(T(x) = y) < kap(X — y) A7)

For any f € M”""(]D)'fi__lp1 , w) with a norm

—1 —1 P 1/p
1flpgoprst = sup @)™ (@& () SO e ()dy)
+ xeD" ! r>0 £.0x)

anda € BM O(ID)ﬁ_'H , w) defines the nonsingular integral operators

Rfx) = / A6 T() — ) f()dy

n—+1
D

€a, f1(x) = [ Rx: T(x) = y)la(x) —a(y)]f(y)dy. 18)

n+1
D

Theorem 2.13. Leta € BMO(]D)ﬁ_'H), w € Apand [ € MP-¥ (ID>'_1i_+l ,w) with (p, ¢) as in Theorem 2.8. Then the

operators K f and E[a, f] are continuous in M P-% (ID)fli_'i_l ,w) and
RSNy gyt < CU Dy g it
~ 1
€1 £, g it = Clolf, Nl Fl g oyt 19)
with a constant independend of a and f.

Corollary 2.14. Leta € VMO, then for any € > 0 there exists a positive number ro = ro(g, na) such that for any
ET(x9) = £-(x9) ﬂID)T'l with a radius r € (0, rg) and center x° = (x”,0,0) and forall f € M?-%(&F (x°), )
holds

1€, £y 0y < CENF N e a0y (20)

where C is independent of €, f, r and x©°.

3 Proof of the main result

As it follows by [39], the problem (3) is uniquely solvable in Wzlf 1(0, w).

We are going to show that f € M?-?(Q,w) implies u € Wzlfi‘p(Q,w). For this goal we obtain an a priori
estimate of u. Following the method used by Chiarenza, Frasca and Longo in [7] and [8], we prove the results
considering two steps.

Interior estimate. For any xg € R’r_l consider the parabolic semi-cylinders C, (xo) = By (x() X (to — r2,to).
Let v € C§°(Cr) and suppose that v(x,¢) = 0 for ¢ < 0. According to [[5], Theorem 1.4] for any x € supp v the
following representation formula for the second derivatives of v holds true

Dijv(x) = PV, / Iy (ix — »la" () — ™ ()] v (y)dy
]R"“"l

+P.V. / [ij(x;x —y)Bu(y)dy + Bv(x) / [ (x;y)vidoy, 21)
RrRr+1 sn
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where v(v1, ..., V;41) is the outward normal to S”. Here ' (x; £) is the fundamental solution of the operator B and
T(x:§) = 8°T(x:§)/08; 08, .

Because of density arguments the representation formula (21) still holds for any v € Wz{’ 1(Cr(x0), w). The
properties of the fundamental solution (cf. [5, 25, 38]) imply I';; are Calderon-Zygmund kernels in the sense
of Definition 2.9. We denote by K;; and &;; the singular integrals defined in (12) with kernels R(x;x — y) =
I';j (x;x — y). Then we can write that

Djjv(x) = €;;[a"®, Dprv](x) + Kij (Bv)(x) + Bo(x) / Lj(x;y)vidoy. (22)
Sn

Because of Corollaries 2.11 and 2.12 and the equivalence of the metrics we get

2 2
[1D=vp.g.0:cr(xo) < CEIDVp.0.0:c(xo) T BUlp.0.0:cr(x0))

for some  small enough. Moving the norm of D2v on the left-hand side we get

1DV ]lp..0:Crx0) < ClIBV]p.gp.wicrxo)
with a constant depending on 7, p, 7a(r), ||allco.0 and || DT ||co, o - Define a cut-off function ¢(x) = ¢1(x")p2(2),
with ¢1 € CS°(By(x()), ¢2 € C§°(R) such that

1 x" € Bgr(x()

)= %o x' & Barr (),

1 te(to—(0r)% 10]
0 t<to—(0'r)>

$a(t) = {

with @ € (0,1), 0" = 6(3—0)/2 > 0 and |D5¢| < C[0(1 — O)r]~5, s = 0,1,2, |¢;| ~ | D?¢|. For any solution
u € Wy (Q, o) of (3) define v(x) = ¢p(x)u(x) € Wy’ (Cr,w). Then we get

2 2
[1D7ullp.0.0:corxo) = 1D Vp.o.wicor,(x0) = ClIIBVIp.0.w:cy, (x0)

||D“||p,w,w;cg/r(m) n ||u||p,w,w:69/r(m)>
o1 —0)r [0(1 —0)r]?

By the choice of 6’ it holds 6(1 — ) < 26’(1 — 6”) which leads to

= C(If Ip.p.wiconcxor +

o — 9)”]2||D2u||p,w,w:C9r(xo) = C("2||f||p,<p,w;Q +6'(1 - ‘9/)"||Du||p,<p,w;69r,(xo) + ||u||p,<p,w;69r,(m))-
Introducing the semi-norms

Os = sup [0(1—O)r*D%ullp.g.w:Cor(xo) § =0,1,2
0<6<1

and taking the supremo with respect to 6 and 6’ we get
02 = C(?| fp.o.w:0 + O1 + O0). (23)
The interpolation inequality [26, Lemma 4.2] gives that there exists a positive constant C independent of r such that
C
®1 <&@y + —0¢ forany ¢ € (0,2).
e
Thus (23) becomes
[6(1 = 01?1 D?ullp.g.0:c0, (x0) < ©2 < CO [ f p..co:0 + Oo)

for each 6 € (0, 1). Taking 6 = 1/2 we get the Caccioppoli-type estimate

1
2
D u”p,cp,wicr/z(m) = C(”f”p,w,w:Q + rj||u||p,<p,a);cr(xo))-
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To estimate u; we exploit the parabolic structure of the equation and the boundedness of the coefficients
2
||ut||p,<ﬂ,w;Cr/2(xo) < llallco.0 I D ““p,tp,w:Cr/z(xo) + ||f||p,(p,w:Cr/z(XO)
1
< (I Ivwio + 5 Iullpw.ic, o)

Consider cylinders Q' = Q' x (0,T) and Q" = Q" x (0, T) with Q" € Q" € , by standard covering procedure
and partition of the unity we get

lullwze o = €1/ Ip.owio + lullp.p.wior)- (24)
1
where C depends on n, p, [a)]jp, AT, |DT | o0:0, Na(r), ||allco.o and dist (22, 0Q").
Boundary estimates. For any fixed R > 0 and x® = (x”, 0, 0) define the semi-cylinders
CF (%) = cr(x*) NDY T

Without lost of generality we can take x0 = (0,0, 0). Define B;’g ={|x'| < R,x, > 0}, S; ={x"| < R,xp, =
0,1 € (0, R?)} and consider the problem

Bu = u, —a'’ (x)Dijju = f(x) ae.in C;I;,
Ju:=u(x’,0) =0, on B;, (25)
Bu ;=1 (x)Dju =0 on S;';.

Letu € sz. (€ ,}I', w) withu = 0 for¢ < 0 and x;,, < 0, then the following representation formula holds (see
[26, 38])

Djju(x) = 1;j(x) — Jij (x) + H;j(x),
where

lij(x) = P-V-/Fi.f(x;x—y)F(x;y)dy+f(x)fFj(x;y)wday, i,j=1,....n;
cR s

Jij (x) = / Iy (e T() — ) F(x: y)dy:

ck
J )
Jin) = g ) = [T = (FE) Feindy,  ij =1
c

07 (x) )1 <3T(x)

s
F(x;y)dy;
o~ axﬂ) (x; y)dy

Iun(0) = [ Trstes 0 = )

ck
F(x;y)dy = f(») + [a"* (y) — " ()] Dpscu(y),

Hij(x) = (Gij *2 g)(x) +g(x”,t)/Gj(x;y”,xn,r)n,-do(y”,r), ij=1,....n,

Sn
aT(x) a™(x) a™(x)
o~ _(—2ann(x),...,—2aT(x),—1).
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Here the kernel G = I"Q, is a byproduct of the fundamental solution and a bounded regular function Q. Hence its
derivatives G;; behave as I';; and the convolution that appears in H;; is defined as follows

(G20 =1V / Gij(x;x" =" xn,t —1)g(y",0,1)dy" d,
Sk
g(x”.0.1) = [(1%(0) = 1¥ (x”.0.00) Dgu — 1¥(O)(Tk % F)] |, =0 (x”.0.1).
(k% F)(x) = / I (ex — ) F(x v)dy.
ch

Here /;; are a sum of singular integrals and bounded surface integrals hence the estimates obtained in Corollaries
2.11 and 2.12 hold true. On the nonsingular integrals J;; we apply the estimates obtained in Theorem 2.13 and
Corollary 2.14 that give

Vi g arict + Wi g aricr < CIF s + ma(RIDul, ot ) (26)

foralli, j =1,...,n. To estimate the norm of H;; we suppose that the vector field / is extended in C; preserving
its Lipschitz regularity and the norm. This automatically leads to extension of the function g in C ;Ie' that is

g(x) = (150 = 15 (0) Dyu(x) = 1K O)(Tk * F)(x). @7)

Applying the estimates for the heat potentials [[25], Chapter 4] and the trace theorems in L? [[2], Theorems 7.48,
7.53] (see also [[38], Theorem 1]) we get

[ 161 w2 0017w01ay = ¢ ([ 1s0)7w0iar + [ IDgmPwwmdy).
Ck Ck Ck
Taking a parabolic cylinder Z, (x) centered in some point x € C}’; we have

w(Zr(x)) | ex,r)""
p(x.r)=7 | o(Z(x))

/ (Gij %2 ()P w()dy < C / 1817 w(y)dy

CENI (%) CHNI (%)
plx,r)"* /
IDgMI”w(y)dy
o(Zr(x))
CHNI (%)
o(Zr(x)) p D
<C—— D .
=C o> ”g”p,w.w;cjg + 1 (g’llp!w’wzcjg

Moving % on the left-hand side and taking the supremo with respect to (x,r) € C;’g x R4 we get

D D D
2 ek < D .
”sz Zg”p,w,wzcjg <C (”g”p.w.w;cjg I g”p.(p.w;CZ)
An immediate consequence of (27) is the estimate

180, g et = NEEO =15OIDEUI, s + IEOTk % P, et

= CRI Lip DUl g et + W0k * Sl g it
+ Tk * 0" () = @™ (O1Dnkll et
The convolution I'y * f is a Riesz potential. On the other hand
| SO SO lfO)I
e Hi=c | dy < CR dy = C .
px — yyrtt plx — y)yrt+2 plx — y)rt+2
Ck Ck Ck
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with a constant depending on 7" and diam Q2. Apply [[16], Theorem 4.8, [13], Theorem 3.1] that gives

1Tk Flp gt < CIE gt
Analogously

|la"* (y) — a"* (x)|| Dpru(y)|
plx — y)rt2

Ty # [0 () — " ()] D] < € /

Ck

dy

with a constant depending on diam Q and T'. The kernel p(x —y) ™12 is a nonnegative singular one and applying
again the results for sub-linear integrals [[13], Theorem 3.7] we get

1Tk * [a" () = a" ()] D + = Clall« [ D?ul|

0.w.0.C ,o,wxp,cjg'

Hence
1800000 = C(RILipe) 1PN et + 1Ny g et + RUCRID? L, et ) C8)
Further, the Rademacher theorem asserts existence almost everywhere of the derivatives Dy, k ¢ L°°, thus
Dpg(x) = =Dpl* (x) Dgu(x) + [1¥(0) = 1* ()] Dine — 1*(0)(Tip, % F)(x).
The M ?-“(w) norm of the last term is estimated as above and
1081 4 aict = € (1D loois I Dull, 4 oct + RULips 1Dl 4 et
1 et + MaRID2ul, ot ) - 29)
Finally unifying (26), (28) and (29) we get
102Ul 4 it = € (1f lpwiwio + 1+ RIDul, , eox
+ (R + 1a(R) + Rua(R)ID?ull, , et )

with a constant depending on known quantities and ||/{|, ;,s) and ||D/[|cc;s. Direct calculations lead to an
interpolation inequality in M ”-“ (w) analogous to [[25], Lemma 3.3] (cf. [41])
D < 8| D? < §e(0,R
1Dl 4 gz < 8ID2ul, 4 et + 5 Nl gt € O R).

P.¢.w; P.¢.w;

Taking0<8=RL_;_1<Rweget

C
2 2 o
1D%ul, 4 et = C (||f||p,w,a>;Q F RID2ul et + Tl gt

+ (R + 1a(R) + Rna(R)ID?ull, , oyt )

Choosing R small enough and moving the terms containing the norm of D2y on the left-hand side we get

1
”Dzl’l”p,(p,a);c"kf =<C (”f”p!(p!w;c; + E”””p,(p,w;cx) )

Because of the parabolic structure of the equation analogous estimate holds also for u; . Further the Jensen inequality
applied to u(x) = f(f ug(x’,s)ds gives

2 2
el et = CRT Nl 4 it =€ (R 11y, 0.0:ct + Rllullp.w.w;c;)

Choosing R smaller, if necessary, we get ||u|| <C|f ||p 0.0 CE and therefore
2Q.w:C R

P.0.@Ch =

1lpect an = CIF g arct = I Ny g et (30)
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Making a covering {C&" },a € Asuchthat 9\ Q' c U e, considering a partition of unity subordinated to that
acA

covering and applying (30) for each C(;F we get
||”||W21fi<”(Q\Q/,w) =Clflp.o.0:0 (B

1
with a constant depending on 7, p, [a)]jp, A, T,diamQ, |DT [co:05 Nas 1allco: 05 1l i p(5)- and [| DI |co.s-
The estimate (11) follows from (24) and (31).
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