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Abstract: In this paper we introduce a property and use this property to prove some common fixed point theorems in
b-metric space. We also give some fixed point results on b-metric spaces endowed with an arbitrary binary relation
which can be regarded as consequences of our main results. As applications, we applying our result to prove the
existence of a common solution for the following system of integral equations:

x.t/ D

bZ
a

K1.t; r; x.r//dr; x.t/ D

bZ
a

K2.t; r; x.r//dr;

where a; b 2 R with a < b, x 2 C Œa; b� (the set of continuous real functions defined on Œa; b� � R) and K1; K2 W
Œa; b� � Œa; b� � R! R are given mappings. Finally, an example is also given in order to illustrate the effectiveness
of such result.

Keywords: b-metric spaces, Coincidence points, Common fixed points, Integral equations
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1 Introduction

The famous Banach contraction mapping principle first appeared in explicit form in Banach’s thesis in 1922 where
it was used to establish the existence of a solution for an integral equation. Since then, because of its simplicity and
usefulness, it has been generalized in several directions over the years. One of the most interesting generalization
is an extension of the class of Banach contraction mappings to the class of weak contraction mappings which was
first introduced by Alber et al. [1] in the setting of Hilbert spaces. Afterwards, Rhoades [2] considered the class of
weak contraction mappings in the setting of metric spaces and proved that the result of Alber et al. [1] is also valid in
complete metric spaces. Fixed point theorems and applications for weak contraction mappings have been considered
in [3–7] and references therein.

On the other hand, in 1984, Khan et al. [8] introduced the concept of an altering distance function as follows:

Definition 1.1. The function ' W Œ0;1/! Œ0;1/ is called an altering distance function if the following properties
hold:
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(1) ' is continuous and non-decreasing;
(2) '.t/ D 0 if and only if t D 0.

In 2011, Choudhury et al. [9] generalized the concept of weak contraction mappings by using an altering distance
function and proved fixed point theorem for such mappings. Recently, Roshan et al. [10] studied some coincidence
point results for four mappings satisfying generalized weak contractive conditions in the framework of partially
ordered b-metric spaces (b-metric spaces in the sense of Czerwik [11]).

Inspired by the results of Roshan et al. [10], we introduce some new properties in the setting of b-metric spaces
and using such properties, prove some coincidence point and common fixed point theorems for four mappings
satisfying generalized weak contractive condition in the setting of b-metric spaces. We also prove some fixed point
results in b-metric spaces endowed with a binary relation which generalize and improve the results of Roshan et al.
[10] and several fixed point results in metric spaces and b-metric spaces.

Finally, as applications, we show the existence of a common solution for a system of the following integral
equations: (

x.t/ D
R b
a
K1.t; r; x.r//dr;

x.t/ D
R b
a
K2.t; r; x.r//dr;

(1)

where a; b 2 R with a < b, x 2 C Œa; b� (the set of continuous real value functions defined on Œa; b� � R) and
K1; K2 W Œa; b�� Œa; b��R! R are the mappings satisfying some conditions. Furthermore, we give some example
to illustrate the existence of a common solution for a system of the integral equations.

2 Preliminaries

In this section, we recollect some essential notations, required definitions and basic results coherent with the
literature. Throughout this paper, we denote by N, RC and R the sets of positive integers, non-negative real numbers
and real numbers, respectively.

In 1993, Czerwik [11] introduced the concept of a b-metric space as follows:

Definition 2.1 ([11]). Let X be a nonempty set and s � 1. Suppose that the mapping d W X �X ! RC satisfies the
following conditions: for all x; y; z;2 X ,
(BM1) d.x; y/ D 0 if and only if x D y;
(BM2) d.x; y/ D d.y; x/;
(BM3) d.x; y/ � sŒd.x; z/C d.z; y/�.
Then .X; d/ is called a b-metric space with coefficient s.

Any metric space is a b-metric space with s D 1 and so the class of b-metric spaces is larger than the class of metric
spaces. Now, we give some known examples of b-metric spaces as follows:

Example 2.2. Let X D R and define a mapping d W X �X ! RC by

d.x; y/ D jx � yj2

for all x; y 2 X . Then .X; d/ is a b-metric space with coefficient s D 2.

Example 2.3. The set lp.R/ with 0 < p < 1, where

lp.R/ WD
˚
fxng � R W

1X
nD1

jxnj
p <1

	
;

together with the mapping d W lp.R/ � lp.R/! RC defined by

d.x; y/ WD .

1X
nD1

jxn � ynj
p/

1
p
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for all x D fxng; y D fyng 2 lp.R/ is a b-metric space with coefficient s D 2
1
p > 1. The above result also holds

for the general case lp.X/ with 0 < p < 1, where X is a Banach space.

Example 2.4. Let p be a given real number in .0; 1/. The space

LpŒ0; 1� WD

8<:x W Œ0; 1�! R
ˇ̌̌ 1Z
0

jx.t/jpdt < 1

9=; ;
together with the mapping d W LpŒ0; 1� � LpŒ0; 1�! RC defined by

d.x; y/ WD
� 1Z
0

jx.t/ � y.t/jpdt
�1=p

for all x; y 2 LpŒ0; 1� is a b-metric space with constant s D 2
1
p > 1.

Next, we give the concepts of b-convergence, b-Cauchy sequence, b-continuity, completeness and closedness in a
b-metric space.

Definition 2.5 ([12]). Let .X; d/ be a b-metric space. Then a sequence fxng in X is called:
(1) b-convergent if there exists x 2 X such that d.xn; x/! 0 as n!1. In this case, we write lim

n!1
xn D x;

(2) a b-Cauchy sequence if d.xn; xm/! 0 as n;m!1.

Proposition 2.6 ([12]). In a b-metric space .X; d/, the following assertions hold:
(1) a b-convergent sequence has a unique limit;
(2) each b-convergent sequence is a b-Cauchy sequence;
(3) in general, a b-metric is not continuous.

From the fact that, in (3) above, we need the following lemma about the b-convergent sequences for our results:

Lemma 2.7 ([13]). Let .X; d/ be a b-metric space with coefficient s � 1 and let fxng, fyng be b-convergent to the
points x; y 2 X , respectively. Then we have

1

s2
d.x; y/ � lim inf

n!1
d.xn; yn/ � lim sup

n!1

d.xn; yn/ � s
2d.x; y/:

In particular, if x D y, then we have lim
n!1

d.xn; yn/ D 0. Moreover, for all z 2 X , we have

1

s
d.x; z/ � lim inf

n!1
d.xn; z/ � lim sup

n!1

d.xn; z/ � sd.x; z/:

Definition 2.8 ([12]). A b-metric space .X; d/ is said to be b-complete if every b-Cauchy sequence in X

b-converges.

Definition 2.9 ([12]). Let .X; d/ and .X 0; d 0/ be two b-metric spaces. A function f W X ! X 0 is said to be
b-continuous at a point x 2 X if it is b-sequentially continuous at x, that is, whenever fxng is b-convergent to x,
ff xng is b-convergent to f x.

Definition 2.10 ([12]). Let Y be a nonempty subset of a b-metric space .X; d/. The closure of Y is denoted by Y
and it is the set of limits of all b-convergent sequences of points in Y , that is,

Y D fx 2 X : there exists a sequence fxng in Y so that lim
n!1

xn D xg.

Definition 2.11 ([12]). Let .X; d/ be a b-metric space. Then a subset Y � X is said to be closed if, for each
sequence fxng in Y which b-converges to an element x, we have x 2 Y (i.e., Y D Y ).
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In 1986, Junck [14] introduced the concept of compatibility in metric space. Now, we give this concept in b-metric
space.

Definition 2.12. Let .X; d/ be a b-metric space with coefficient s � 1 and f; g W X ! X be two mappings. The
pair .f; g/ is said to be compatible if

lim
n!1

d.fgxn; gf xn/ D 0

whenever fxng is a sequence in X such that

lim
n!1

f xn D lim
n!1

gxn D t

for some t 2 X . If s D 1, then it becomes compatible in the sense of Junck [14].

In [15], Junck gave the following concept:

Definition 2.13 ([15]). Let f and g be two self mappings on a nonempty set X . The pair .f; g/ is said to be weakly
compatible if f and g commute at their coincidence point (i.e., fgx D gf x whenever f x D gx).

The weak compatibility leads to the compatibility but its converse need not be true.
In 2014, Hussain et al. [16] introduced the concept of ˛-completeness in metric spaces. Inspired by this concept,

we give this concept in b-metric spaces as follows:

Definition 2.14. Let .X; d/ be a b-metric space with coefficient s � 1 and let ˛ W X � X ! Œ0;1/ be a given
mapping. The b-metric space X is said to be ˛-complete if every Cauchy sequence fxng � X with

˛.xn; xnC1/ � 1

for all n 2 N converges in X .

In 2014, Sintunavarat [17] (see also [6]) introduced the useful concept of transitivity for mappings as follows:

Definition 2.15. Let X be a nonempty set. The mapping ˛ W X � X ! Œ0;1/ is said to be transitive if, for
x; y; z 2 X , we have

˛.x; y/ � 1; ˛.y; z/ � 1 H) ˛.x; z/ � 1:

3 Main results

In this section, we introduce some new properties and establish coincidence point and common fixed point theorems
by using these concepts.

Definition 3.1. Let X be a nonempty set, ˛ W X � X ! Œ0;1/ and f; g W X ! X be three mappings. The ordered
pair .f; g/ is said to be:
(1) ˛-weakly increasing if ˛.f x; gf x/ � 1 and ˛.gx; fgx/ � 1 for all x 2 X ;
(2) partially ˛-weakly increasing if ˛.f x; gf x/ � 1 for all x 2 X .

Throughout this paper, for a self mapping f on a nonempty set X and a point x 2 X , we use the following notation:

f �1.x/ WD fu 2 X W f u D xg:

Definition 3.2. Let X be a nonempty set, ˛ W X � X ! Œ0;1/ and f; g; h W X ! X be four mappings such that
f .X/ � h.X/ and g.X/ � h.X/. The ordered pair .f; g/ is said to be:
(1) ˛-weakly increasing with respect to h if, for all x 2 X , we have ˛.f x; gy/ � 1 for all y 2 h�1.f x/ and

˛.gx; fy/ � 1 for all y 2 h�1.gx/;
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(2) partially ˛-weakly increasing with respect to h if ˛.f x; gy/ � 1 for all y 2 h�1.f x/.

Remark 3.3. From Definition 3.2, we have the following assertions:
(1) If h D IX (: the identity mapping on X ), then Definition 3.2 reduces to Definition 3.1;
(2) If g D f , then we say that f is ˛-weakly increasing with respect to h (partially ˛-weakly increasing with

respect to h). Also, if h D IX , then we say that f is ˛-weakly increasing (partially ˛-weakly increasing).

Definition 3.4. Let .X; d/ be a b-metric space, ˛ W X � X ! Œ0;1/ and f; g W X ! X be three mappings. The
pair .f; g/ is said to be ˛-compatible if

lim
n!1

d.fgxn; gf xn/ D 0

whenever fxng is a sequence in X such that
˛.xn; xnC1/ � 1

for all n 2 N and
lim
n!1

f xn D lim
n!1

gxn D t

for some t 2 X .

Definition 3.5. Let .X; d/ be a b-metric space, ˛ W X �X ! Œ0;1/ and f W X ! X be two mappings. We say that
f is ˛-continuous at a point x 2 X if, for each sequence fxng in X with xn ! x as n!1 and ˛.xn; xnC1/ � 1
for all n 2 N, we have

lim
n!1

f xn D f
�

lim
n!1

xn

�
:

Let .X; d/ be a b-metric space with coefficient s � 1 and f; g;R; S W X ! X be four mappings. Throughout this
paper, unless otherwise stated, for all x; y 2 X , let

Ms.x; y/ WD max
n
d.Sx;Ry/; d.Sx; f x/; d.Ry; gy/;

d.Sx; gy/C d.Ry; f x/

2s

o
:

Now, we give a coincidence point result in this paper.

Theorem 3.6. Let .X; d/ be a b-metric space with coefficient s � 1, ˛ W X �X ! Œ0;1/ and f; g;R; S W X ! X

be five mappings such that f .X/ � R.X/ and g.X/ � S.X/. Suppose that, for all x; y 2 X , we have

˛.Sx;Ry/ � 1 or ˛.Ry; Sx/ � 1 H)  .s3d.f x; gy// �  .Ms.x; y// � '.Ms.x; y//; (2)

where  ; ' W Œ0;1/! Œ0;1/ are altering distance functions. If the following conditions hold:
(1) .X; d/ is ˛-complete;
(2) f; g;R and S are ˛-continuous;
(3) the pairs .f; S/ and .g;R/ are ˛-compatible;
(4) the pairs .f; g/ and .g; f / are partially ˛-weakly increasing with respect to R and S , respectively;
(5) ˛ is a transitive mapping,
then the pair .f; S/ and .g;R/ have a coincidence point z 2 X . Moreover, if ˛.Rz; Sz/ � 1 or ˛.Sz;Rz/ � 1,
then z is a coincidence point of f; g;R and S .

Proof. Let x0 be an arbitrary point of X . Choose x1 2 X such that f x0 D Rx1 and x2 2 X such that gx1 D Sx2.
Now, we can construct a sequence fzng defined by

z2nC1 WD Rx2nC1 D f x2n; z2nC2 WD Sx2nC2 D gx2nC1

for all n 2 N [ f0g. Since x1 2 R�1.f x0/, x2 2 S�1.gx1/ and the pair .f; g/ and .g; f / are partially ˛-weakly
increasing with respect to R and S , respectively, we have

˛.z1; z2/ D ˛.f x0; gx1/ � 1; ˛.z2; z3/ D ˛.Sx2; f x2/ � 1:
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Repeating this process, we obtain
˛.zn; znC1/ � 1 (3)

for all n 2 N [ f0g. Furthermore, by the transitive property of ˛, we have

˛.z2n; z2nC2/ � 1 (4)

and
˛.z2nC1; z2nC3/ � 1 (5)

for all n 2 N.
Now, we will complete the proof in three steps:

Step I. We prove that lim
k!1

d.zk ; zkC1/ D 0. For all k 2 N [ f0g, we define dk WD d.zk ; zkC1/. We assume

that dk0 D 0 for some k0 2 N [ f0g, which implies that zk0 D zk0C1. If k0 D 2n such that n 2 N [ f0g, then
z2n D z2nC1. Next, we show that z2nC1 D z2nC2. Since ˛.Sx2n; Rx2nC1/ D ˛.z2n; z2nC1/ � 1, we have

 .s3d.z2nC1; z2nC2// D  .s3d.f x2n; gx2nC1//

�  .Ms.x2n; x2nC1// � '.Ms.x2n; x2nC1//; (6)

where

Ms.x2n; x2nC1/

D max
n
d.Sx2n; Rx2nC1/; d.Sx2n; f x2n/; d.Rx2nC1; gx2nC1/;

d.Sx2n; gx2nC1/; d.Rx2nC1; f x2n/

2s

o
D max

n
d.z2n; z2nC1/; d.z2n; z2nC1/; d.z2nC1; z2nC2/;

d.z2n; z2nC2/C d.z2nC1; z2nC1/

2s

o
D max

n
0; 0; d.z2nC1; z2nC2/;

d.z2n; z2nC2/

2s

o
� max

n
0; 0; d.z2nC1; z2nC2/;

0C d.z2nC1; z2nC2/

2

o
D d.z2nC1; z2nC2/:

Therefore, from (6), we have

 .s3d.z2nC1; z2nC2// �  .d.z2nC1; z2nC2// � '
�

max
n
d.z2nC1; z2nC2/;

d.z2n; z2nC2/

2s

o�
�  .s3d.z2nC1; z2nC2// � '

�
max

n
d.z2nC1; z2nC2/;

d.z2n; z2nC2/

2s

o�
:

This implies that

'
�

max
n
d.z2nC1; z2nC2/;

d.z2n; z2nC2/

2s

o�
D 0

and so
d.z2nC1; z2nC2/ D 0:

Therefore, we have z2nC1 D z2nC2. Similarly, if k0 D 2n C 1 such that n 2 N [ f0g, then z2nC1 D

z2nC2 gives z2nC2 D z2nC3. Consequently, the sequence fzng becomes constant for k � k0 and hence
limk!1 d.zk ; zkC1/ D 0. This completes this step.

Therefore, we will suppose that
dk D d.zk ; zkC1/ > 0 (7)

for all k 2 N [ f0g. Next, we show that

d.zkC1; zkC2/ � d.zk ; zkC1/ (8)

for all k 2 N [ f0g. Assume that
d.zkC1; zkC2/ > d.zk ; zkC1/



134 O. Yamaod et al.

for some k 2 N [ f0g. If k D 2n such that n 2 N [ f0g, then we have

d.z2nC1; z2nC2/ > d.z2n; z2nC1/:

Since
˛.Sx2n; Rx2nC1/ � 1;

using (2), we obtain

 .s3d.z2nC1; z2nC2// D  .s3d.f x2n; gx2nC1//

�  .Ms.x2n; x2nC1// � '.Ms.x2n; x2nC1//; (9)

where

Ms.x2n; x2nC1/

D max
n
d.Sx2n; Rx2nC1/; d.Sx2n; f x2n/; d.Rx2nC1; gx2nC1/;

d.Sx2n; gx2nC1/C d.Rx2nC1; f x2n/

2s

o
D max

n
d.z2n; z2nC1/; d.z2n; z2nC1/; d.z2nC1; z2nC2/;

d.z2n; z2nC2/C d.z2nC1; z2nC1/

2s

o
� max

n
d.z2n; z2nC1/; d.z2nC1; z2nC2/;

d.z2n; z2nC1/C d.z2nC1; z2nC2/

2

o
D d.z2nC1; z2nC2/:

Since  is nondecreasing and
Ms.x2n; x2nC1/ � d.z2nC1; z2nC2/;

we have
 .Ms.x2n; x2nC1// �  .d.z2nC1; z2nC2//:

Now, the inequality (9) implies that

 .s3d.z2nC1; z2nC2// �  .d.z2nC1; z2nC2// � '.Ms.x2n; x2nC1//;

which is possible only Ms.x2n; x2nC1/ D 0, that is, d.z2nC1; z2nC2/ D 0, which contradicts (7). Hence we have

d.z2nC1; z2nC2/ � d.z2n; z2nC1/:

Therefore, (8) is proved for k D 2n. Also, we have

d.z2n; z2nC1/ DMs.x2n; x2nC1/:

Similarly, we can shown that

d.z2nC2; z2nC3/ � d.z2nC1; z2nC2/ DMs.x2nC1; x2nC2/ (10)

for all n 2 N[f0g. Hence the inequality (8) holds and then fd.zk ; zkC1/g is a nonincreasing sequence of nonnegative
real numbers. Since fd.zk ; zkC1/g is bounded below, there exists r � 0 such that

lim
k!1

d.zk ; zkC1/ D r (11)

and then
lim
k!1

Ms.xk ; xkC1/ D r: (12)

Furthermore, we get
 .s3d.zkC1; zkC2// �  .d.zk ; zkC1// � '.Ms.xk ; xkC1// (13)

for all k 2 N [ f0g. Letting k !1 in (13), using (11), (12) and the continuity of  , ', we have

 .s3r/ �  .r/ � '.r/:
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This implies that '.r/ D 0. From the property of ', we have r D 0 and so

lim
k!1

d.zk ; zkC1/ D 0: (14)

Step II. We now claim that fzng is a b-Cauchy sequence in X . That is, for any � > 0, there exists k 2 N such that
d.zm; zn/ < �, for all m; n � k. Assume that there exists � > 0 for which we can find subsequences fzm.k/g and
fzn.k/g of fzng such that n.k/ > m.k/ � k and
(a) m.k/ D 2t and n.k/ D 2t 0 C 1, where t; t 0 2 N;
(b)

d.zm.k/; zn.k// � �I (15)

(c) n.k/ is the smallest number such that the condition (b) holds, i.e.,

d.zm.k/; zn.k/�1/ < �: (16)

By the triangle inequality, (15) and (16), we obtain

� � d.zm.k/; zn.k//

� sŒd.zm.k/; zn.k/�1/C d.zn.k/�1; zn.k//�

< s� C d.zn.k/�1; zn.k//: (17)

Taking limit supremum as k !1 in (17) and using (14), we have

� � lim sup
k!1

d.zm.k/; zn.k// � s�: (18)

From the triangle inequality, we have

d.zm.k/; zn.k// � sŒd.zm.k/; zn.k/C1/C d.zn.k/C1; zn.k//� (19)

and
d.zm.k/; zn.k/C1/ � sŒd.zm.k/; zn.k//C d.zn.k/; zn.k/C1/�: (20)

Taking limit supremum as k !1 in (19) and (20), from (14) and (18), it follows that

� � s

�
lim sup
k!1

d.zm.k/; zn.k/C1/

�
and

lim sup
k!1

d.zm.k/; zn.k/C1/ � s
2�;

This implies that
�

s
� lim sup
k!1

d.zm.k/; zn.k/C1/ � s
2�: (21)

Again, using above process, we get

�

s
� lim sup
k!1

d.zn.k/; zm.k/C1/ � s
2�: (22)

Finally, we obtain that

d.zm.k/; zn.k/C1/ � sŒd.zm.k/; zm.k/C1/C d.zm.k/C1; zn.k/C1/�: (23)

Taking limit supremum as k !1 in (23), from (14) and (21), we obtain that

�

s2
� lim sup
k!1

d.zm.k/C1; zn.k/C1/: (24)

By similar method, we have
lim sup
k!1

d.zm.k/C1; zn.k/C1/ � s
3�: (25)
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From (24) and (25) implies that

�

s2
� lim sup
k!1

d.zm.k/C1; zn.k/C1/ � s
3�: (26)

Since ˛ is transitive, we have
˛.zm.k/C1; zn.k/C1/ � 1:

From (2), it follows that

 .s3d.zm.k/C1; zn.k/C1// D  .s3d.f xm.k/; gxn.k///

�  .Ms.xm.k/; xn.k/// � '.Ms.xm.k/; xn.k///; (27)

where

Ms.xm.k/; xn.k// D max
n
d.Sxm.k/; Rxn.k//; d.Sxm.k/; f xm.k//; d.Rxn.k/; gxn.k//;

d.Sxm.k/; gxn.k//C d.Rxn.k/; f xm.k//

2s

o
D max

n
d.zm.k/; zn.k//; d.zm.k/; zm.k/C1/; d.zn.k/; zn.k/C1/;

d.zm.k/; zn.k/C1/C d.zn.k/; zm.k/C1/

2s

o
:

Taking limit supremum as k !1 in the above equation and using (14), (18), (21), (23) and (22), we have

� D max
�
�;

�
s
C
�
s

2s

�
� lim sup
k!1

Ms.xm.k/; xn.k// � max
�
s�;

s2� C s2�

2s

�
D s�:

Also, we can show that

� D max
�
�;

�
s
C
�
s

2s

�
� lim inf
k!1

Ms.xm.k/; xn.k// � max
�
s�;

s2� C s2�

2s

�
D s�:

Taking limit supremum as k !1 in (27), we have

 .s�/ D  
�
s
�
s2
�

s2

��
�  

�
s3lim sup
k!1

d.zm.k/C1; zn.k/C1/
�

�  
�

lim sup
k!1

Ms.xm.k/; xn.k/

�
� '

�
lim inf
k!1

Ms.xm.k/; xn.k/

�
�  .s�/ � '.�/: (28)

This implies that '.�/ � 0 and so � D 0, which is a contradiction. Therefore, fzng is a b-Cauchy sequence.

Step III. We will show that f; g;R and S have a coincidence point. From Step II, we show that fzng is a b-Cauchy
sequence in X . Since the inequality (3) holds, by the ˛-completeness of b-metric space X , there exists z 2 X such
that

lim
n!1

d.zn; z/ D 0

and so
lim
n!1

d.z2nC1; z/ D lim
n!1

d.Rx2nC1; z/ D lim
n!1

d.f x2n; z/ D 0 (29)

and
lim
n!1

d.z2nC2; z/ D lim
n!1

d.Sx2nC2; z/ D lim
n!1

d.gx2nC1; z/ D 0: (30)

From (29) and (30), we have f x2n ! z and Sx2n ! z as n!1. Since .f; S/ is ˛-compatible, by (4), we have

lim
n!1

d.Sf x2n; f Sx2n/ D 0: (31)



Existence of a common solution for a system of nonlinear integral equations 137

By (4), the ˛-continuity of S , f and Lemma 2.7, we obtain

lim
n!1

d.Sf x2n; Sz/ D 0 D lim
n!1

d.fSx2n; f z/: (32)

By the triangle inequality, we have

d.Sz; f z/ � sŒd.Sz; Sf x2n/C d.Sf x2n; f z/�

� sd.Sz; Sf x2n/C s
2Œd.Sf x2n; f Sx2n/C d.fSx2n; f z/� (33)

for all n 2 N [ f0g. Taking limit as n!1 in the above inequality and using (23) and (31), we obtain

d.Sz; f z/ � 0:

This implies that d.Sz; f z/ D 0 and so f z D Sz, that is, z is a coincidence point of f and S . Similarly, we can
prove that z is also a coincidence point of g and R.

Finally, we prove that z is a coincidence point of f; g;R and S provide that

˛.Rz; Sz/ � 1 or ˛.Sz;Rz/ � 1: (34)

From (2) and (34), we have
 .s3d.f z; gz// �  .Ms.z; z// � '.Ms.z; z//; (35)

where

Ms.z; z/ D max
n
d.Sz;Rz/; d.Sz; f z/; d.Rz; gz/;

d.Sz; gz/C d.Rz; f z/

2s

o
D d.Sz;Rz/

D d.f z; gz/:

Therefore, (35) implies
 .s3d.f z; gz// �  

�
d.f z; gz/

�
� '

�
d.f z; gz/

�
:

Now we obtain that
 
�
d.f z; gz/

�
D 0:

This implies that d.f z; gz/ D 0 and so
f z D gz D Rz D Sz:

Hence z is a coincidence point of f; g;R and S . This completes the proof.

Next, we give an example to illustrate Theorem 3.6.

Example 3.7. Let X D R and b-metric d W X � X ! Œ0;1/ be given by d.x; y/ D jx � yj2 for all x; y 2 X .
Define mapping f; g;R; S W X ! X and ˛ W X �X ! Œ0;1/ by

f x D

(
sinh�1 x; x 2 Œ0;1/I
�0:2; x 2 .�1; 0/;

(36)

gx D

(
sinh�1

�
x
2

�
; x 2 Œ0;1/I

�0:2; x 2 .�1; 0/;
(37)

Rx D

(
sinh 6x; x 2 Œ0;1/I
�0:2; x 2 .�1; 0/;

(38)

Sx D

(
sinh 12x; x 2 Œ0;1/I
�0:2; x 2 .�1; 0/;

(39)

and

˛.x; y/ D

(
1; x � y and x; y 2 Œ0;1/I

0; otherwise.
(40)
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It is easy to see that .X; d/ is an ˛-complete b-metric space with coefficient s D 2. Also, we can see that f; g;R and
S are ˛-continuous.

To prove that .f; g/ is partially ˛-weakly increasing with respect toR. Let x; y 2 X be such that y 2 R�1.f x/,
that is, Ry D f x. By the definition of f and R, we divide two cases, that is,

x; y 2 Œ0;1/ or x; y 2 .�1; 0/:

If x; y 2 Œ0;1/, then we have
sinh 6y D sinh�1 x

and so

y D
sinh�1.sinh�1 x/

6
:

Since sinh x � sinh�1 x for all x � 0, we have 12x � sinh�1.sinh�1 x/ or

f x D sinh�1 x � sinh�1
� 1
12

sinh�1.sinh�1 x/
�
D sinh�1

�1
2
y
�
D gy:

If x; y 2 .�1; 0/, then f x D gy and so ˛.f x; gy/ D 1. Hence .f; g/ is partially ˛-weakly increasing with respect
to R.

To prove that .g; f / is partially ˛-weakly increasing with respect to S . Let x; y 2 X be such that y 2 S�1.gx/,
that is, Sy D gx. By the definition of g and S , we divide two cases, that is,

x; y 2 Œ0;1/ or x; y 2 .�1; 0/:

If x; y 2 Œ0;1/, then we have
sinh 12y D sinh�1

x

2

and so

y D
sinh�1.sinh�1 x

2
/

12
:

Since sinh x � sinh�1 x for all x � 0, we have

x

2
� sinh�1

�
sinh�1

x

2

�
�

sinh�1.sinh�1 x
2
/

12

and so

gx D sinh�1
x

2
� sinh�1

� 1
12

sinh�1
�

sinh�1
x

2

��
D sinh�1 y D fy:

If x; y 2 .�1; 0/, then gx D fy and so ˛.gx; fy/ D 1. Hence .g; f / is partially ˛-weakly increasing with respect
to R.

Furthermore, f .X/ D g.X/ D S.X/ D R.X/ D f�0:2g [ Œ0;1/. Next, we will show that .f; S/ is ˛-
compatible. Suppose that fxng is a sequence in X such that

˛.xn; xnC1/ � 1

for all n 2 N and
lim
n!1

d.t; f xn/ D lim
n!1

d.t; Sxn/ D 0

for some t 2 X . Therefore, we have xn 2 Œ0;1/ and xn � xnC1 for all n 2 N and so

lim
n!1

j sinh�1 xn � t j D lim
n!1

j sinh 12xn � t j D 0:

The continuity of hyperbolic sine and inverse hyperbolic sine functions imply that

lim
n!1

jxn � sinh t j D lim
n!1

ˇ̌̌
xn �

sinh�1 t
12

ˇ̌̌
D 0:
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By the uniqueness of the limit, we get sinh t D sinh�1 t
12

: But we have

sinh t D
sinh�1 t
12

” t D 0:

Thus we have t D 0. Therefore

lim
n!1

d.fSxn; Sf xn/ D lim
n!1

jfSxn � Sf xnj
2
D 0:

Similarly, we can prove that .g;R/ s also ˛-compatible. Define two functions  ; ' W Œ0;1/! Œ0;1/ by  .t/ D bt
and '.t/ D .b � 1/t for all t 2 Œ0;1/, where b 2 .1; 18/.

Next, we show that the condition (2) holds with the functions  and '. Assume that ˛.Sx;Ry/ � 1 or
˛.Ry; Sx/ � 1. From the definition of S and R, we conclude that x; y 2 Œ0;1/. Using the Mean Value Theorem
simultaneously for the hyperbolic sine function and inverse hyperbolic sine functions, we have

 .s3d.f x; gy// D 8bjf x � gyj2

D 8b

ˇ̌̌̌
sinh�1 x � sinh�1

y

2

ˇ̌̌̌2
� 8b

ˇ̌̌̌
x �

y

2

ˇ̌̌̌2
D 8b

j12x � 6yj2

144

�
b

18
j sinh 12x � sinh 6yj2

� jSx �Ryj2

D d.Sx;Ry/

� Ms.x; y/

�  .Ms.x; y// � '.Ms.x; y//:

This implies that (2) holds. Therefore, all the conditions of Theorem 3.6 are satisfied. Then we can conclude that
f; g;R and S have coincidence point, that is, a point 0.

Theorem 3.8. Let .X; d/ be a b-metric space with coefficient s � 1, ˛ W X �X ! Œ0;1/ and f; g;R; S W X ! X

be five mappings such that f .X/ � R.X/ and g.X/ � S.X/ andR.X/ and S.X/ be b-closed subset ofX . Suppose
that, for all x; y 2 X , we have

˛.Sx;Ry/ � 1 or ˛.Ry; Sx/ � 1 H)  .s3d.f x; gy// �  .Ms.x; y// � '.Ms.x; y//; (41)

where  ; ' W Œ0;1/! Œ0;1/ are altering distance functions. If the following conditions hold:
(1) .X; d/ is ˛-complete;
(2) X is ˛-regular, i.e., if fxng is sequence in X such that ˛.xn; xnC1/ � 1 for all n 2 N and xn ! x 2 X as

n!1, then ˛.xn; x/ � 1 for all n 2 N;
(3) the pairs .f; S/ and .g;R/ are weakly compatible;
(4) the pairs .f; g/ and .g; f / are partially ˛-weakly increasing with respect to R and S , respectively;
(5) ˛ is a transitive mapping,
then the pair .f; S/ and .g;R/ have a coincidence point z 2 X . Moreover, if ˛.Rz; Sz/ � 1 or ˛.Sz;Rz/ � 1,
then z is a coincidence point of f; g;R and S .

Proof. First, we prove the following in Theorem 3.6, that is, there exists z 2 X such that

lim
n!1

d.zn; z/ D 0: (42)

Since R.X/ is b-closed and fz2nC1g � R.X/, it follows that z 2 R.X/. Hence there exists u 2 X such that
z D Ru and

lim
n!1

d.z2nC1; Ru/ D lim
n!1

d.Rx2nC1; Ru/ D 0: (43)
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Similarly, there exists v 2 X such that z D Ru D Sv and

lim
n!1

d.z2n; Sv/ D lim
n!1

d.Sx2n; Sv/ D 0: (44)

Next, we prove that v is a coincidence point of f and S . Since Rx2nC1 ! z D Sv as n!1, it follows from the
˛-regularity of X that ˛.Rx2nC1; Sv/ � 1. Therefore, from (41), we have

 .s3d.f v; gx2nC1// �  .Ms.v; x2nC1// � '.Ms.v; x2nC1//; (45)

where

Ms.v; x2nC1/ D max
n
d.Sv;Rx2nC1/; d.Sv; f v/; d.Rx2nC1; gx2nC1/;

d.Sv; gx2nC1/C d.Rx2nC1; f v/

2s

o
:

Taking limit as n!1 in (45) and using Lemma 2.7, we obtain

 .sd.f v; z// D  
�
s3
1

s2
d.f v; z/

�
�  .d.f v; z// � '.d.f v; z//;

which implies that f v D z D Sv. Since f and S are weakly compatible, we have

f z D fSv D Sf v D Sz:

Thus z is a coincidence point of f and S . Similarly, it can be shown that z is a coincidence point of pair .g;R/. The
rest of the proof follows from similar arguments as in Theorem 3.6. This completes the proof.

Corollary 3.9. Let .X; d/ be a b-metric space with coefficient s � 1, ˛ W X � X ! Œ0;1/ and f; g W X ! X be
three mappings. Suppose that, for all x; y 2 X , we have

˛.x; y/ � 1 or ˛.y; x/ � 1 H)  .s3d.f x; gy// �  .Ns.x; y// � '.Ns.x; y//; (46)

where

Ns.x; y/ D max
�
d.x; y/; d.x; f x/; d.y; gy/;

d.x; gy/C d.y; f x/

2s

�
and  ; ' W Œ0;1/! Œ0;1/ are altering distance functions. If the following conditions hold:
(1) .X; d/ is ˛-complete;
(2) f and g are ˛-continuous (or X is ˛-regular);
(3) the pairs .f; g/ and .g; f / are partially ˛-weakly increasing;
(4) ˛ is a transitive mapping,
then the pair .f; g/ have a common fixed point in X .

Proof. If R and S are the identity mappings in Theorem 3.6 and Theorem 3.8, then we have this result.

4 Fixed point results in b-metric spaces endowed with a binary
relation

In this section, we give some fixed point results in b-metric spaces endowed with a binary relation, which can be
regarded as consequences of the results presented in the previous section.

The following notions and definitions are needed.

Definition 4.1. Let .X; d/ be a b-metric space endowed with a binary relation R in X . The b-metric space X is
said to be R-complete if every Cauchy sequence fxng in X with xnRxnC1 for all n 2 N converges in X .

Definition 4.2. Let .X; d/ be a b-metric space endowed with a binary relation R in X and f W X ! X be a
mapping. We say that f is R-continuous if, for any sequence fxng in X with xn ! x 2 X as n ! 1 and
xnRxnC1 for all n 2 N, we have

lim
n!1

f xn D f
�

lim
n!1

xn

�
:
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Definition 4.3. Let .X; d/ be a b-metric space endowed with a binary relation R in X and f; g W X ! X be two
mappings. The pair .f; g/ is said to be R-compatible if

lim
n!1

d.fgxn; gf xn/ D 0

whenever fxng is a sequence in X such that
xnRxnC1

for all n 2 N and
lim
n!1

f xn D lim
n!1

gxn D t

for some t 2 X .

Definition 4.4. Let X be a nonempty set, R be a binary relation in X and f; g; h W X ! X be three mappings such
that f .X/ � h.X/ and g.X/ � h.X/. The ordered pair .f; g/ is said to be:
(1) R-weakly increasing with respect to h if, for each x 2 X , we have .f x/R.gy/ for all y 2 h�1.f x/ and

.gx/R.fy/ for all y 2 h�1.gx/;
(2) partially R-weakly increasing with respect to h if .f x/R.gy/ for all y 2 h�1.f x/.

Definition 4.5. Let X be a nonempty set. A relation R on X is said to be transitive if, for x; y; z 2 X ,

xRy and yRz H) xRz:

Theorem 4.6. Let .X; d/ be a b-metric space with coefficient s � 1 endowed with a binary relation R in X and
f; g;R; S W X ! X be four mappings such that f .X/ � R.X/ and g.X/ � S.X/. Suppose that, for all x; y 2 X ,
we have

.Sx/R.Ry/ � 1 or .Ry/R.Sx/ � 1 H)  .s3d.f x; gy// �  .Ms.x; y// � '.Ms.x; y//; (47)

where  ; ' W Œ0;1/! Œ0;1/ are altering distance functions. If the following conditions hold:
(1) .X; d/ is R-complete;
(2) f; g;R and S are R-continuous;
(3) the pairs .f; S/ and .g;R/ are R-compatible;
(4) the pairs .f; g/ and .g; f / are partially R-weakly increasing with respect to R and S , respectively;
(5) R is a transitive relation,
then the pair .f; S/ and .g;R/ have a coincidence point z 2 X . Moreover, if .Rz/R.Sz/ or .Sz/R.Rz/, then z is
a coincidence point of f; g;R and S .

Proof. Consider a mapping ˛ W X �X ! Œ0;1/ defined by

˛.x; y/ D

(
1; xRy;
0; otherwise.

(48)

It is easy to see that all the conditions in Theorem 3.6 hold and so the conclusion of this theorem follows from
Theorem 3.6.

Theorem 4.7. Let .X; d/ be a b-metric space with coefficient s � 1 endowed with a binary relation R in X and
f; g;R; S W X ! X be four mappings such that f .X/ � R.X/, g.X/ � S.X/ and R.X/, S.X/ be b-closed subset
of X . Suppose that, for all x; y 2 X , we have

.Sx/R.Ry/ � 1 or .Ry/R.Sx/ � 1 H)  .s3d.f x; gy// �  .Ms.x; y// � '.Ms.x; y//; (49)

where  ; ' W Œ0;1/! Œ0;1/ are altering distance functions. If the following conditions hold:
(1) .X; d/ is R-complete;
(2) X is R-regular, i.e., if fxng is a sequence in X such that xnRxnC1 for all n 2 N and xn ! x 2 X as n!1,

then xnRx for all n 2 N;
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(3) the pairs .f; S/ and .g;R/ are weakly compatible;
(4) the pairs .f; g/ and .g; f / are partially R-weakly increasing with respect to R and S , respectively;
(5) R is a transitive relation,
then the pair .f; S/ and .g;R/ have a coincidence point z 2 X . Moreover, if .Rz/R.Sz/ or .Sz/R.Rz/, then z is
a coincidence point of f; g;R and S .

Proof. The results follow from Theorem 3.8 by considering a mapping ˛ W X �X ! Œ0;1/ given by (48).

Remark 4.8. Since � is a transitive relation in partially ordered b-metric spaces .X;�; d /, Theorems 4.6 and 4.7
are a generalization and an improvement of Theorems 2.1 and 2.2 of Roshan et al. [10].

5 Existence of a common solution for a system of integral
equations

Consider the following system of nonlinear integral equations:(
x.t/ D

R b
a
K1.t; r; x.r//dr;

x.t/ D
R b
a
K2.t; r; x.r//dr;

(50)

where a; b 2 R with a < b, x 2 C Œa; b� (the set of continuous real value functions defined on Œa; b� � R) and
K1; K2 W Œa; b�� Œa; b��R! R are mappings. The purpose of this section is to present the existence theorem for a
solution of the system (50) by using the result in previous section. We furnish an illustrative example to demonstrate
the validity of the hypotheses and degree of utility of our results.

Now, we prove the following result:

Theorem 5.1. Consider the system of integral equations .50/. Suppose that the following conditions hold:
(1) K1; K2 W Œa; b� � Œa; b� � R! R are continuous;
(2) for all x 2 X and t; r 2 Œa; b�, we have

K1.t; r; x.r// � K2

�
t; r;

bZ
a

K1.r; w; x.w//dw
�

and

K2.t; r; x.r// � K1

�
t; r;

bZ
a

K2.r; w; x.w//dw
�
I

(3) there exists p > 1 such that for all x; y 2 X and r; t 2 Œa; b� with x.v/ � y.v/ for all v 2 Œa; b�, we have

jK1.t; r; x.r// �K2.t; r; y.r//j � �.t; r/.�.jx.r/ � y.r/j
p//;

where � W Œa; b� � Œa; b�! Œ0;1/ is a continuous function satisfying

sup
t2Œa;b�

� bZ
a

�.t; r/pdr
�
<

1

23p
2�3p.b � a/p�1

and � W Œ0;1/! Œ0;1/ is continuous nondecreasing and satisfying the following conditions:
(�1) �.h/ D 0 if and only if h D 0;
(�2) �.h/ < h for all h > 0.

Then the system of nonlinear integral equations .50/ has a common solution.
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Proof. Let X D C Œa; b� and let f; g W X ! X be two mappings which are defined by

.f x/.t/ D

bZ
a

K1.t; r; x.r//dr; .gx/.t/ D

bZ
a

K2.t; r; x.r//dr

for all x 2 X and t 2 Œa; b�. Then the existence of a solution of (50) is equivalent to the existence of a common fixed
point of f and g. Clearly, X with the b-metric given by

d.u; v/ D sup
t2Œa;b�

ju.t/ � v.t/jp

for all u; v 2 X is a complete b-metric space. Define a mapping ˛ W X �X ! Œ0;1/ by

˛.x; y/ D

(
1; x.t/ � y.t/ for all t 2 Œa; b�I
0; otherwise.

It is easy to observe that X is ˛-regular. From the condition (2), the ordered pairs .f; g/ and .g; f / are partially
˛-weakly increasing.

Next, we will show that the condition (47) holds. To prove this fact, we first choose q 2 R such that q WD
1 � 1

p
> 1. Now, let x; y 2 X be such that ˛.x; y/ � 1. From condition (3) and the Hölder inequality, for each

t 2 Œa; b� we have

.23p�3j.f x/.t/ � .gy/.t/j/p

� 23p
2�3p

0@ bZ
a

jK1.t; r; x.r// �K2.t; r; y.r//jdr

1Ap

� 23p
2�3p

2664
0@ bZ
a

1qdr

1A 1
q
0@ bZ
a

jK1.t; r; x.r// �K2.t; r; y.r//j
pdr

1A 1
p

3775
p

� 23p
2�3p.b � a/

p
q

0@ bZ
a

�.t; r/p.�.jx.r/ � y.r/jp//pdr

1A
� 23p

2�3p.b � a/
p
q

0@ bZ
a

�.t; r/p.�.d.x; y///pdr

1A
� 23p

2�3p.b � a/
p
q

0@ bZ
a

�.t; r/p.�.Ms.x; y///
pdr

1A
D 23p

2�3p.b � a/p�1

0@ bZ
a

�.t; r/pdr

1A .�.Ms.x; y///p
< .�.Ms.x; y///

p

D Ms.x; y/
p
� .Ms.x; y/

p
� .�.Ms.x; y///

p/:

In case of ˛.y; x/ � 1, we also get

.22p�2j.f x/.t/ � .gy/.t/j/p �Ms.x; y/
p
� .Ms.x; y/

p
� .�.Ms.x; y///

p/:

Hence, we have

.s3d.f x; gy//p D
�
s3 sup
t2Œa;b�

j.f x/.t/ � .gy/.t/j
�p
�Ms.x; y/

p
� ŒMs.x; y/

p
� .�.Ms.x; y///

p�

for all x; y 2 X , where  ; ' W Œ0;1/ ! Œ0;1/ are the functions defined by  .t/ D tp and '.t/ D tp � .�.t//p

for all t 2 Œ0;1/. Thus, by the conditions .�1/ and .�2/, we can prove that ' is the altering distance function.
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Also, it is easy to see that  is the altering distance. Therefore, the condition (47) holds. By using Corollary 3.9,
there exists Ox 2 X which is a common fixed point of f and g, that is, Ox is a common solution for the system (50).
This completes the proof.

Finally, we provide example to illustrate the Theorem 5.1 presented herein.

Example 5.2. The system of nonlinear integral equations(
x.t/ D

R 5
1
K1.t; r; x.r// dr;

x.t/ D
R 5
1
K2.t; r; x.r// dr;

(51)

where x 2 C Œ1; 5� and K1; K2 W Œ1; 5� � Œ1; 5� � R! R are defined by

K1.u; v; w/ D K2.u; v; w/ D e
u
C v

for all u; v 2 Œ1; 5� and w 2 R, has a common solution.

Proof. It is easy to see that the system of nonlinear integral equations (51) becomes the system of nonlinear integral
equations (50) with a D 1 and b D 5.

Now, we will show that all conditions in Theorem 5.1 are satisfied. It is easy to see that K1; K2 are continuous.
Next, we claim that the condition (2) in Theorem 5.1 holds. Assume that x 2 C Œ1; 5� and t; r 2 Œ1; 5�. Then we have

K1.t; r; x.r// D e
t
C r D K2

�
t; r;

5Z
1

K1.r; w; x.w//dw
�

and

K2.t; r; x.r// D e
t
C r D K1

�
t; r;

5Z
1

K2.r; w; x.w//dw
�
:

Hence, the condition (2) in Theorem 5.1 is proved. Also, we can easily prove that the condition (3) in Theorem 5.1
is true. Therefore, all the conditions of Theorem 5.1 hold and then system of nonlinear integral equations (51) has a
common solution. This completes the proof.
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