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1 Introduction
Discrete Schrödinger operators over �nite or in�nite paths have been subject of an intensive research over
the last four decades. They represent the discrete analogs of one–dimensional self–adjoint operators on
a bounded or unbounded interval on the real line, see for instance [1]. In addition, those operators are in
relation with Jacobi matrices and hence with the classical theory of orthogonal polynomials.

Theparticular case of the so–calledalmostMathieu operatorhasdeserved special attentionnot only by its
connections to physics but for its rich spectral theory. In fact, one of themain problems in this area, related to
the topological structure of the spectra and popularized as the TenMartini Problem, has been recently solved
by concatenating the work of many outstanding researchers, see [2–4]. The problem is closely related to the
determination of those energies for which the corresponding Schrödinger equation has non trivial bounded
eigenfunctions.

The aim of this communication is by farmuchmoremodest.We use recent advances in the study of linear
di�erence equationswith periodic coe�cients, see [5], to provide easy characterizations for the boundedness
of the solutions of the Mathieu equations, that correspond to some speci�c Schrödinger equations with
periodic potential, see [6]. Moreover, we also extend the results to general second order linear di�erence
equations with periodic coe�cients.
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2 Preliminaries
Throughout the paper, `(Z) denotes the vector space of real sequences; that is, `(Z) = {z∶ZÐ→ R}, whereas
`∗(Z) is the set of sequences z ∈ `(Z) such that z(k) /= 0 for all k ∈ Z. The null sequence, also called the trivial
sequence, is denoted by 0.

Given z ∈ `(Z) and p ∈ N∗, for any m ∈ Z we denote by zp,m ∈ `(Z) the subsequence of z de�ned as

zp,m(k) = z(kp +m), k ∈ Z.

Clearly, any sequence z ∈ `(Z) is completely determined by the values of the sequences zp,j, for 0 ≤ j ≤ p − 1.
In particular, z1,0 = z, whereas z2,0 and z2,1 are the subsequences of z formed by the even or odd indexes,
respectively. Moreover, the sequences z1,m are the shift subsequences of z, since z1,m(k) = z(k + m) for any
k ∈ Z. Notice that if we also allow p = −1, then z−1,m are the �ipped shift subsequences of z, since z−1,m(k) =
z(m − k) for any k ∈ Z.

The sequence z ∈ `(Z) is called periodic with period p ∈ N∗ if it satis�es that

z(p + k) = z(k), k ∈ Z,

which also implies that z(kp +m) = z(m) for any k,m ∈ Z.
The set of periodic sequenceswith period p is denotedby `(Z; p) andwede�ne `∗(Z; p) = `(Z; p)∩`∗(Z).

In particular `(Z; 1) consists of all constant sequences and then, it is identi�ed with R.

Lemma 2.1. Given z ∈ `(Z), then z is bounded i� there exists p ∈ N∗ such that zp,j is bounded, for 0 ≤ j ≤ p − 1
and then, zr,m is bounded for any r ∈ N∗ and any m ∈ Z.

Given p ∈ N∗, then z ∈ `(Z; p) i� zp,m ∈ `(Z; 1) for any m ∈ Z. Moreover, all periodic sequence is also
bounded.

Given p ∈ N∗, a ∈ `(Z; p) and c ∈ `∗(Z; p), consider the associated self–adjoint operator∆a,c ∶ `(Z)Ð→ `(Z),
de�ned as

∆a,c(z)(k) = c(k)z(k + 1) + c(k − 1)z(k − 1) − a(k)z(k), k ∈ Z (1)

and the corresponding (irreductible) homogeneous equation

∆a,c(z) = 0. (2)

The sequences a and c are called the coe�cients of the Equation (2) and any sequence z ∈ `(Z) satisfying the
Identity (2) is called a solution of the equation. It is well-known that for any z0, z1 ∈ R and any m ∈ Z, there
exists a unique solution of Equation (2) satisfying z(m) = z0 and z(m + 1) = z1.

The problem we are interested in, can be formulated as follows:
For which coe�cients a, c ∈ `(Z; p) has the equation∆a,c(z) = 0 bounded solutions, other than the trivial

one?
Operator (1), and hence Equation (2), encompasses many speci�c examples that have been widely

considered in the literature. For instance, when c(k) > 0 for any k ∈ Z, then ∆a,c = −Lq, the Schrödinger
operator on the in�nite path with conductance c and potencial q(k) = a(k) − c(k) − c(k − 1); that is,

Lq(z)(k) = c(k)(z(k) − z(k + 1)) + c(k − 1)(z(k) − z(k − 1)) + q(k)z(k).

In particular, when c(k) = 1, for any k ∈ Z, then ∆a,c is known as the Harper operator and denoted byHa.
More speci�cally when, in addition, the coe�cient a is given by a(k) = E − λ cos(2πωk + θ), k ∈ Z, then the
operatorHa is calledMathieu operator and the parameters E, λ ∈ R, ω ∈ Q, θ ∈ [0, 2π), are called the energy,
coupling, frequency, and phase, respectively. In this case the operatorHa is usually represented asHE,λ,ω,θ.
If we permit the frequency not to be a rational number; that is, ω ∈ R, thenHE,λ,ω,θ is called almost Mathieu
operator, but it does not have periodic coe�cients. Therefore, in this work we are only interested in Mathieu
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operators; that is, in rational frequencies. We must bear in mind that when ω = m
p , where m ∈ Z and p ∈ N∗

are relative primes, then a ∈ `(Z; p).
Observe that the equation HE,λ,ω,θ(u) = 0 is equivalent to the equation Hλ,ω,θ(u) = Eu; where Hλ,ω,θ

denotes the operator HE,λ,ω,θ when E = 0. Therefore, the energy E is an eigenvalue and u a corresponding
eigenfunction of the operatorHλ,ω,θ.

The interested reader can �nd the physics meaning of these parameters and the physics background of
these kind of operators in [1–3] and also in [7].

The paper [5] was devoted to the Floquet Theory for the equation∆a,c = 0; that is, to the condition under
which the above equation has periodic solutions. Since any periodic solution is bounded, this characteriza-
tion gives us only a partial answer to the main question. However, we can follow the same techniques as in
[5] to completely solve the question.

We end this preliminary section by remarking that when only a �nite interval in Z is considered, namely
when k = 0, 1, . . . , n for some n ∈ N, then Equation (2) must be supplied with some boundary conditions and
it is relatedwith the inversion of �nite and symmetric Jacobimatrices, see for instance [8]. Another interesting
application of these boundary value problems falls in the ambit of Organic Chemistry, see Examples 1 and 2
in page 364 of [5]. In this case, all the eigenfuncions are bounded, so the main problem is nothing else that
the consideration of the eigenvalue problem. For the Mathieu equation with null frequency, this analysis in
the �nite interval case can be found in [9].

3 The easiest case
The most simple case of the proposed problem corresponds to a, c ∈ `(Z; 1); that is, when the coe�cients of
∆a,c are constant; i.e. a ∈ R and c ∈ R∗. Self–adjoint linear di�erence equations with constant coe�cients
can be characterized as those satisfying that z ∈ `(Z) is a solution i� any shift and any �ipped shift of z is also
a solution. Moreover, in this case, Equation (2) is equivalent, in the sense that both have the same solutions,
to the Chebyshev equation with parameter q

z(k + 1) − 2qz(k) + z(k − 1) = 0, k ∈ Z, (3)

where q = a
2c

. So, we can say that themost simple case to analyze corresponds to both the uncoupled Harper
equation and the coupledHarper equationwith null frequency.Moreover, these twokinds of equations canbe
viewed in an uni�ed manner as Chebyshev equations. Any solution of a Chebyshev equation with parameter
q is called Chebyshev sequence with parameter q.

Recall that a polynomial sequence {Pk(x)}k∈Z ⊂ R[x] is a sequence of Chebyshev polynomials if it satis�es
the following three-term recurrence, see [10],

Pk+1(x) = 2xPk(x) − Pk−1(x), k ∈ Z. (4)

Therefore, any Chebyshev sequence with parameter q is of the form {Pk(q)}k∈Z, where {Pk(x)}k∈Z is a
sequence of Chebyshev polynomials. So, many properties of Chebyshev sequences are the consequence of
properties of Chebyshev polynomials and conversely.

As a by–product of the Proposition 2.1 in [5], we have the following basic result about periodic and
bounded Chebyshev sequences.

Proposition 3.1. Given a ∈ R, c /= 0 we have the following results:
(i) The equation∆a,c(z) = 0 has bounded solutions i� ∣a∣ ≤ 2∣c∣. Moreover, when ∣a∣ < 2∣c∣ all the solutions are

bounded.
(ii) When a = 2c the unique bounded solutions are the constant ones, whereas when a = −2c the bounded

solutions are all multiple of z(k) = (−1)k.
(iii) The equation∆a,c(z) = 0 has periodic solutions with period p i� a = 2c cos ( 2πj

p ), j = 0, . . . , ⌈ p−1
2 ⌉.

(iv) The equation∆a,c(z) = 0 has constant solutions i� a = 2c
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The main result about the boundedness of solutions for di�erence equations with constant coe�cients has
the following particularization for Mathieu operators.

Corollary 3.2. Given E, λ ∈ R and θ ∈ [0, 2π) the Mathieu equation with null frequency

z(k + 1) + z(k − 1) − λ cos(θ)z(k) = Ez(k), k ∈ Z

has bounded solutions i� ∣E − λ cos(θ)∣ ≤ 2 and all its solutions are bounded when the inequality is strict.
The equation has constant solutions i� E = 2 + λ cos(θ) in which case the constant ones are the unique

bounded solutions, whereas when E = λ cos(θ)− 2 the bounded solutions are multiple of z(k) = (−1)k. Finally,
the equation has has periodic solutions with period p i� E = λ cos(θ) + 2 cos ( 2πj

p ), j = 0, . . . , ⌈ p−1
2 ⌉.

4 The general case
Back to the general case, consider p ∈ N∗, a ∈ `(Z; p), c ∈ `∗(Z; p) and the associate self–adjoint operator
∆a,c. Although this scenario seems to be far away from the easiest one analyzed in the previous section, we
will show that in fact Chebyshev equations contain all the information needed to conclude the existence
of bounded solutions for the di�erence equation ∆a,c(z) = 0. This is true because the main result in [5]
establishes that (irreductible) second order di�erence equations (not necessarily self-adjoint) with periodic
coe�cients are basically equivalent to some Chebyshev equation. For the setting concerning to this paper we
have the following facts.

Lemma 4.1 ([5, Theorem 3.3]). Given p ∈ N∗, a ∈ `(Z; p) and c ∈ `∗(Z; p); there exists q(a, c; p) ∈ R,
depending only on the coe�cients a and c and on the period p, such that z ∈ `(Z) is a solution of the equation
∆a,c(z) = 0 i� for any m ∈ Z, zp,m is a solution of the Chebyshev equation with parameter q(a, c; p); that is

v(k + 1) − 2q(a, c; p)v(k) + v(k − 1) = 0, k ∈ Z.

As the boundedness of z is equivalent to the boundedness of the sequences zp,m, m = 0, . . . , p − 1, we can
conclude that existence of bounded solutions for the equation∆a,c(z) = 0, depends only on the knowledge of
the speci�c value q(a, c; p). Since in [5, Theorem 3.3] the existence of this parameterwas proved by induction
the above result is not useful in practice. For this reason, most of the above mentioned paper was devoted to
the explicit computation of the so–called Floquet function; that is, the function assigning the value q(a, c; p)
to any a ∈ `(Z; p) and c ∈ `∗(Z; p). Notice that, in fact, the value q(a, c; p) only depends on a(j), c(j),
j = 0, . . . , p − 1. Once this function was obtained, the characterization of the existence of periodic solutions
for the equation ∆a,c(z) = 0 appears as a simple by–product, since from Lemma 2.1, they are characterized
as being constant the sequences zp,m, 0 ≤ m ≤ p − 1, see [5, Corollary 4.8]. So, the main novelty of this paper
is to derive the characterization of the existence of bounded solutions for the equation∆a,c(z) = 0, from the
value q(a, c; p). To do this, we need to introduce some notations and concepts.

A binary multi-index of order p is a p-tuple α = (α0, . . . ,αp−1) ∈ {0, 1}p and its length is de�ned as

∣α∣ =
p−1
∑
j=0

αj ≤ p. So ∣α∣ = m i� exactly m components of α are equal to 1 and exactly p − m components of α

are equal to 0.
Givenabinarymulti-index of order p,α ∈ {0, 1}p such that ∣α∣ = m ≥ 1,we consider0 ≤ i1 < ⋯ < im ≤ p−1

such that αi1 = ⋯ = αim = 1. Given p ∈ N∗, we de�ne the following subsets of the set {0, 1}p of binary multi-
indexes of order p:
(i) Λ0

p = {(0, . . . , 0)}, for p ≥ 1.
(ii) Λ1

p = {α ∶ ∣α∣ = 1}, for p ≥ 2.
(iii) Λm

p = {α ∶ ∣α∣ = m, ij+1 − ij ≥ 2, 1 ≤ j ≤ m − 1 and im ≤ p − 2 if i1 = 0} for p ≥ 4, and m = 2, . . . , ⌊ p2 ⌋,
where 0 ≤ i1 < ⋯ < im ≤ p − 1 are the indexes such that αi1 = ⋯ = αim = 1.
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In addition, if p ≥ 2, m = 1, . . . , ⌊ p2 ⌋ and α ∈ Λm
p , let 0 ≤ i1 < ⋯ < im ≤ p − 1 be the indexes such that

αi1 = ⋯ = αim = 1. Then, we de�ne the binary multi-index ᾱ of order p as

ᾱij = ᾱij+1 = 0, j = 1, . . . ,m, and ᾱi = 1 otherwise,

where if im = p − 1, then ᾱp−1 = ᾱ0 = 0. Moreover, if α = (0, . . . , 0); that is, if α ∈ Λ0
p, then we de�ne

ᾱ = (1, . . . , 1). It is clear that, in any case, ∣ᾱ∣ = p − 2m.
We are now ready to show the expression for the value of q(a, c; p). In the sequel, we always assume

that 00 = 1 and also the usual convention that empty sums and empty products are de�ned as 0 and 1,
respectively.

Lemma 4.2 ([5, Theorem 4.4]). Given p ∈ N∗, a ∈ `(Z; p) and c ∈ `∗(Z; p), then

q(a, c; p) = 1
2
(
p−1
∏
i=0

c(i))
−1 ⌊

p
2 ⌋
∑
j=0

(−1)j ∑
α∈Λj

p

p−1
∏
i=0

c(i)2αia(i)ᾱi .

Observe that when p = 1, the above identity becomes q(a, c; 1) = a
2c

; that is, the value corresponding to the
case in which the coe�cients a and c are constant; or equivalent both have period p = 1.

Our main result appears now as a consequence of the Proposition 3.1 together with Lemma 2.1 and also
the above Lemma.

Theorem 4.3. Given p ∈ N∗, a ∈ `(Z; p) and c ∈ `∗(Z; p), then the equation

c(k)z(k + 1) + c(k − 1)z(k − 1) − a(k)z(k) = 0, k ∈ Z

has bounded solutions i�

∣
⌊ p2 ⌋
∑
j=0

(−1)j ∑
α∈Λj

p

p−1
∏
i=0

c(i)2αia(i)ᾱi ∣ ≤ 2
p−1
∏
i=0

∣c(i)∣

and when the inequality is strict, all the solutions are bounded. Moreover, if

⌊ p2 ⌋
∑
j=0

(−1)j ∑
α∈Λj

p

p−1
∏
i=0

c(i)2αia(i)ᾱi = 2
p−1
∏
i=0

c(i)

then the equation has periodic solutions with period p and these are the unique bounded solutions.

Corollary 4.4. Given E, λ ∈ R, θ ∈ [0, 2π) and ω = m
p
, where p ∈ N∗, m ∈ Z and (p,m) = 1, then the Mathieu

equation
z(k + 1) + z(k − 1) + λ cos(2πωk + θ)z(k) = Ez(k), k ∈ Z

has bounded solutions i�

∣
⌊ p2 ⌋
∑
j=0

(−1)j ∑
α∈Λj

p

p−1
∏
i=0

(E − λ cos(2πωi + θ))ᾱi ∣ ≤ 2

and when the inequality is strict, all the solutions are bounded. Moreover, if

⌊ p2 ⌋
∑
j=0

(−1)j ∑
α∈Λj

p

p−1
∏
i=0

(E − λ cos(2πωi + θ))ᾱi = 2

then the Mathieu equation has periodic solutions with period p and these are the unique bounded solutions.

Clearly, themain di�culty to apply the above characterizations is to obtain the binarymulti–indexes involved
in them. In general, this is a di�cult task and, in fact, the number of multi–indexes in Λj

p, 0 ≤ j ≤ ⌊ p2 ⌋, grows
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dramaticallywith p. Speci�cally, we have ∣Λj
p ∣ =

p
p − j

(p − j
j

) for any 0 ≤ j ≤ ⌊ p2 ⌋, which for anym ∈ N∗ implies

that
m
∑
j=0

∣Λj
2m ∣ = 2Tm(

3
2
) and that

m
∑
j=0

∣Λj
2m+1∣ = Wm(

3
2
), see [5, Proposition 4.2].

We end this paper with some speci�c examples using the given characterization for the existence of
bounded solutions for di�erence equations with periodic coe�cients with period up to 4. Remember that
the case p = 1, the easiest case, has been analyzed in the previous sections.

Corollary 4.5 (Period p = 2). Given a ∈ `(Z; 2) and c ∈ `∗(Z; 2), then the equation

c(k)z(k + 1) + c(k − 1)z(k − 1) − a(k)z(k) = 0, k ∈ Z

has bounded solutions i�
(∣c(0)∣ − ∣c(1)∣)2 ≤ a(0)a(1) ≤ (∣c(0)∣ + ∣c(1)∣)2

andwhenboth inequalities are strict, thenall the solutions are bounded. In particular, given E, λ ∈ R, θ ∈ [0, 2π),
then the Mathieu equation

z(k + 1) + z(k − 1) + λ cos(πk + θ)z(k) = Ez(k), k ∈ Z

has bounded solutions i�
0 ≤ E2 − λ2 cos2(θ) ≤ 4.

Proof. In this case we have Λ0
2 = {(0, 0)}, Λ1

2 = {(1, 0), (0, 1)}, Λ̄0
2 = {(1, 1)} and Λ̄1

2 = {(0, 0), (0, 0)},

which implies that q(a, c; 2) = a(0)a(1) − c(0)2 − c(1)2

2c(0)c(1) .

In particular, for the Mathieu which coe�cient has period 2, the frequency is ω = m
2
, wherem ∈ Z is odd

and hence ω = n + 1
2 with n ∈ Z. Therefore, the coe�cient is a(k) = E − λ cos(πk + θ), which implies that

a(0) = E − λ cos(θ), whereas a(1) = E − λ cos(π + θ) = E + λ cos(θ).

Corollary 4.6 (Period p = 3). Given a ∈ `(Z; 3) and c ∈ `∗(Z; 3), then the equation

c(k)z(k + 1) + c(k − 1)z(k − 1) − a(k)z(k) = 0, k ∈ Z

has bounded solutions i�

∣a(0)a(1)a(2) − c(0)2a(2) − c(1)2a(0) − c(2)2a(1)∣ ≤ 2∣c(0)c(1)c(2)∣

and when the inequality is strict, all the solutions are bounded. In particular, given E, λ ∈ R, θ ∈ [0, 2π) and
ω = m

3
, where m ∈ Z and (3,m) = 1, then the Mathieu equation

z(k + 1) + z(k − 1) + λ cos(2πωk + θ)z(k) = Ez(k), k ∈ Z

has bounded solutions i�

∣(E − λ cos(θ))(E2 − 3
4
λ

2 + λ2 cos2(θ) + Eλ cos(θ)) − 3E∣ ≤ 2.

Proof. In this case we have Λ0
3 = {(0, 0, 0)} and Λ1

3 = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}, which implies that
Λ̄0

3 = {(1, 1, 1)} and Λ̄1
3 = {(0, 0, 1), (1, 0, 0), (0, 1, 0)} and hence,

q(a, c; 3) = a(0)a(1)a(2) − c(0)2a(2) − c(1)2a(0) − c(2)2a(1)
2c(0)c(1)c(2) .

In particular, for the Mathieu equation the condition for the existence of bounded solutions becomes

∣a(0)a(1)a(2) − a(0) − a(1) − a(2)∣ ≤ 2.



Bounded solutions of self-adjoint second order linear di�erence equations with periodic coe�cients | 81

On the other hand, the frequency is ω = m
3

where (m, 3) = 1 which implies that ω = n + r
3
, where n ∈ Z and

r = 1, 2. Therefore, the coe�cient is given by ar(k) = E − λ cos (π 2r
3 k + θ), and hence

a1(0) = a2(0) = E − λ cos(θ),

a1(1) = a2(2) = E − λ cos (π 2
3 + θ) = E + λ

2
[ cos(θ) +

√
3 sin(θ)],

a1(2) = a2(1) = E − λ cos (π 4
3 + θ) = E + λ

2
[ cos(θ) −

√
3 sin(θ)]

.

Corollary 4.7 (Period p = 4). Given a ∈ `(Z; 4) and c ∈ `∗(Z; 4), then the equation

c(k)z(k + 1) + c(k − 1)z(k − 1) − a(k)z(k) = 0, k ∈ Z

has bounded solutions i�

∣ a(0)a(1)a(2)a(3) − c(0)2a(2)a(3) − c(1)2a(0)a(3) − c(2)2a(0)a(1)

−c(3)2a(1)a(2) + c(0)2c(2)2 + c(1)2c(3)2∣ ≤ 2∣c(0)c(1)c(2)c(3)∣

and when the inequality is strict, all the solutions are bounded. In particular, given E, λ ∈ R, θ ∈ [0, 2π) and
ω = m

4
, where m ∈ Z and (4,m) = 1, then the Mathieu equation

z(k + 1) + z(k − 1) + λ cos(2πωk + θ)z(k) = Ez(k), k ∈ Z

has bounded solutions i�

4(E2 − 1) ≤ (E2 − λ2 cos2(θ))(E2 − λ2 sin2(θ)) ≤ 4E2.

Proof. In this case we have Λ0
4 = {(0, 0, 0, 0)},

Λ
1
4 = {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, Λ2

4 = {(1, 0, 1, 0), (0, 1, 0, 1)}

which implies that Λ̄0
4 = {(1, 1, 1, 1)} and

Λ̄
1
4 = {(0, 0, 1, 1), (1, 0, 0, 1), (1, 1, 0, 0), (0, 1, 1, 0)}, Λ̄2

4 = {(0, 0, 0, 0), (0, 0, 0, 0)}

and hence,

q(a, c; 4) = 1
2c(0)c(1)c(2)c(3)[a(0)a(1)a(2)a(3) − c(0)2a(2)a(3) − c(1)2a(0)a(3)

−c(2)2a(0)a(1) − c(3)2a(1)a(2) + c(0)2c(2)2 + c(1)2c(3)2]

In particular, for the Mathieu equation the condition for the existence of bounded solutions becomes

−4 ≤ a(0)a(1)a(2)a(3) − a(2)a(3) − a(0)a(3) − a(0)a(1) − a(1)a(2) ≤ 0.

On the other hand, the frequency is ω = m
4

where (m, 4) = 1 which implies that ω = n + r
4
, where n ∈ Z and

r = 1, 3. Therefore, the coe�cient is given by ar(k) = E − λ cos (π r
2 k + θ), and hence

a1(0) = a3(0) = E − λ cos(θ),

a1(1) = a3(3) = E + λ sin(θ),

a1(2) = a3(2) = E + λ cos(θ),

a1(3) = a3(1) = E − λ sin(θ)

.
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