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1 Introduction

The notion of convergence spaces (refer to [1] for convergence spaces) is introduced by extending the theory
of convergence in general topological spaces. For a set X, we denote the power set (resp., the set of filters) on
X as P(X) (resp., F(X)). Then a convergence space is defined as a pair (X, Q), where Q ¢ F(X) x X is a binary
relation satisfying:

(C1) (%,x) € Qfor any x € X, where x = {A € P(X)|x € A} is the principal filter generated by x;
(CYVF,§eF(X),FcGand (F,x) € Qimply (G, x) € Q.

If (3, x) € Q then we say that F converges to x, and denote it as F <, X.

A convergence space (X, Q) is called topological whenever F 2, xifand only if F converges to x
w.r.t some topological space. A convergence space (X, Q) is topological if and only if it satisfies the Fischer
diagonal condition.

Let J be any set,  : ] — F(X) and F € F(J), where & is called a choice function of filters. Then the

Kowalsky compression operator on = (¥) € F(F(X)) is defined as K&F := U N D(y).
AeF yeA

Given a convergence space (X, Q), using Kowalsky compression operator, the Fischer diagonal condition
is given as follows.

(F) Let J be any set, ¢ : ] — X, & : ] — F(X) such that &(j) N ¥ (j) for each j € J. If F € F(X) satisfies
= (F) -2, x, then kKoF - x.

If we take J = X and + = idy in (F) then we get the Kowalsky diagonal condition (K).

A convergence space (X, Q) is called regular if it satisfies the following dual Fischer diagonal condition.

(DF) Let ] be any set, ¢ : ] — X, & : ] — F(X) such that &(j) R ¥ (j) for each j € J. If F € F(X) satisfies
ko7 % x, then W7 (F) % x
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For a convergence space generated by a topological space, the convergence space is regular if and only if
the corresponding topological space is regular.

In recent years, many kinds of fuzzy convergence spaces, such as stratified L-generalized convergence
spaces [2], stratified L-convergence spaces [3], L-ordered convergence spaces [4, 5] and T-convergence spaces
[6, 7], were defined and discussed [8-25]. In particular, the regularities of fuzzy convergence spaces were
discussed by different kinds of extending dual Fischer diagonal conditions [6, 8, 9, 13, 16-18]. In this paper,
we introduce a regularity for T-convergence spaces by an extending dual Fischer diagonal condition.

The contents are arranged as follows. In Section 2, we recall some basic notions. In Section 3, we present
the main results: the notion of T-regular T-convergence spaces, and their relationships to regular convergence
spaces, and an extension theorem of continuous function. In Section 4, we conclude with a summary.

2 Preliminaries

A commutative quantale is a pair (L, *), where L is a complete lattice with respect to a partial order < on it,
with the top (resp., bottom) element T (resp., 1), and * is a commutative semigroup operation on L such that
a * Vg bj = Vjg(a + bj) forall a € L and {b;};i € L. (L, +) is said to be integral if the top element T is the
unique unit in the sense of T+ a = aforall a € L. (L, ) is said to be meet continuous if the underlying lattice
(L, <) is a meet continuous lattice, that is, the binary meet operation A distributes over directed joins [26]. In
this paper, if not otherwise specified, L = (L, *) is always assumed to be an integral, commutative, and meet
continuous quantale.

Since the binary operation » distributes over arbitrary joins, the function a * (=) : L — L has a right
adjointa — (=) : L — Lgivenbya - b =V{ceL:axc < b}. We collect here some basic properties of the
binary operations * and — [27, 28]:

Ma—-b=Tewa<h;Qaxb<ceb<a—c;3)ax(a->b)<h;lWa—-(b->c)=(a*b)—>c;

() (Vjes aj) = b = Njg(aj — b); (6) a > (Aje bj) = Ajeg(a — bj).

We call a function 1 : X — L an L-fuzzy subset in X. We use L to denote the set of all L-fuzzy subsets
in X. For any A c X, let T4 denote the characteristic function of A. The operators \/, A, * and — on L can be
translated onto L* in a pointwise way. That is, for all z.(t € T) € L*,

(V) () =V pe(x), - (A pe)(x) = A\ we(x),
teT teT teT teT
(p*v)(x) = p(x) *v(x), (k= v)(x) = p(x) - v(x).

Let f : X — Y be a function. We define f~ : L* — LY and f* : L — L¥, [27], by £ (1) (¥) = Vj(x)=y 1(X)
for e L¥andy e Y, and f~(v)(x) = v(f(x)) forv e LY and x ¢ X.

Let u, v be L-fuzzy subsets in X. The subsethood degree [29-33] of u, v, denoted as Sx(u, v), is defined
by Sx(u, v) = /\X(u(X) - v(X)).

XE€

Lemma 2.1 ([6, 29, 34-38]). Letf : X — Y be a function and p1, p2 € LX, A1, A\, € LY. Then
(D Sx(p1, p2) < Sy(F 7 (p1), f7 (p2)),
(2) Sy(A1, X2) < Sx(f~ (M), f~ (22)).

Definition 2.2 ([27, 39]). A nonempty subset F c L* is called a T-filter on the set X whenever:
(TF1) V XM(x) =T forall X e F;
xeX

(TF)MApeF forall M\, € F;
(TE3) if A € L* such that \/ Sx(u, ) = T, then X € F.
el

It is easily seen that the condition (TF3) implies a weaker condition (TF3') u e F and < A == X ¢ F.
The set of all T-filters on X is denoted by F] (X).
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Definition 2.3 ([27]). A nonempty subset B c L* is called a T-filter base on the set X provided:
(TB1) V A(x) =T forall \ € B;
xeX

(TB2) if A\, p € B, then \/ Sx(v,AAp)=T.
veB

Each T-filter base B on X generates a T-filter Fy defined by Fg = {X € L¥| Ver Sx(us A) = T}. And for any
X € LX, we have the following equality [23]: V/ Sx(ps A) =V Sx(p, M)
peB

pefg

We list some fundamental facts about T-filters in the following proposition.

Proposition 2.4 ([6, 27]).

(1) For any x ¢ X, the family [x]r =: {\ ¢ L*|]\(x) = T} is a T-filter on X, called the principal T-filter on X
generated by x.

(2) For any {F;}ie; € F](X), Nier Fi is also a T-filter.

(3) Let f : X — Y be a function. For any F ¢ F| (X), the family {f~ ()\)|\ € F} forms a T-filter base on Y, and
the T-filter f~ () generated by it is called the image of F under f. For any G € F; (Y), the family {f = (u)|u € G}
forms a T-filter base on X if and only if \/,cx 1(f(x)) = T holds for all i € G, and the T-filter f = (G) (if exists)
generated by it is called the inverse image of G under f.

Lemma 2.5.
(1) Let F, G € F; (X) and B be a T-filter base of F. Then B c G implies that F < G.
(2) Letf : X —> Y be a function and F € F[ (X). Then A € f~ (F) ifand only if f~ (\) € F.

Proof. (1) For any ) € F, we have

T=V Sx(, A) <V Sx(p, A),
neB neG

which means )\ € G, as desired.
(2) Let A € f~ (F). Then

7=V Sy(f7 (1), < \/FSx(f*f*(u),f*(A)) <V Sx(u 7 (V).
L€

pelF peF
It follows that f~(\) € F. Conversely, let f~(\) e F. Then A > f7f~(\) € f~(F), and so X € f~ (F). O

Let F € F] (X), it is easily seen that the set «(F) = {A c X|T4 € F} is a filter on X. Conversely, let F ¢ F(X),
then the set {T4|A € F} forms a T-filter base on X and the T-filter generated by it is denoted as w(¥).

Lemma2.6. Letf:X — Y,F e F(X),F e F[ (X) and x € X. Then:
1) w(F) =3,

(2) we(F) € F,

B) w(x) = [x]r,

@) o([x]r) =%,

6) (f7 (F)) = f7 («(F)).

Proof. We prove only (5) and others are easily observed. Indeed,
Ac(f7(F)) < fT(Ta) eF o Ty eF=fT(A) eu(F) < Acf(«(F)). O

Definition 2.7 ([6]). A T-convergence spaceis a pair (X, q), where g < F| (X) x X is a binary relation satisfying
(TC1) ([x]+,x) € q forevery x € X; (TC2) if (F, x) € g and F ¢ G, then (G, x) € q.
If (F, x) € g, then we say that IF converges to x, and denote it as F A x.

It is easily seen that a T-convergence space is precisely a convergence space when L = {1, T}.
For the categorical theory, we refer to the monograph [40].
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3 Aregularity for T-convergence spaces

In this section, we shall discuss a regularity for T-convergence spaces by an extending dual Fischer diagonal
condition.

Let Jbe any set, ¢ : ] — IFZ (X)and F € IFZ (J), where ¢ is called a choice function of T-filters. Then the
extending Kowalsky compression operator on ¢~ (F) € F] (F] (X)) is defined as

keF:= {J (o).

Ac (F) yeA

We prove that k¢ satisfies (TF1)-(TF3).
(TF1): Let X € k¢F. Then there exists an A € «(F) such that for any y € A, )\ € ¢(y). It follows by ¢(y) €
F; (X) that \/ A(x) = T. Thus the condition (TF1) is satisfied.
xeX

(TF2): Let A, i1 € k¢F. Then there exist A, B € .(IF) such that

re o) and e )6(2)

yeA
It followsthat AnB e u(F)and AApe N ¢(w), and then A A p € k¢F. Thus the condition (TF2) is satisfied.
weAnB
(TF3): Let A ¢ L satisfy V Sx(w, ) = T. Then for any i € k¢F, there exists an A € () such that for
pekopF

anyy e A, peod(y).Bypued(y)wehave V Sx(v,p) =T.Then it follows that forany y € A,
vep(y)

T=V (Sx(u,)\)* \V Sx(V,/.L))S Vo Sx(v, ).

pekgF vep(y) vegp(y)

That means X € ¢(y), and so X € k¢F. Thus the condition (TF3) is satisfied.
Using Kowalsky compression operator, an extension of the (dual) diagonal condition (F) ((DF)) is given
as follows:

(TF) Let J be any set, 1) : ] — X, ¢ : ] —> F} (X) such that ¢(j) — v(j) for each j € J. If F € F} (X) satisfies
= (F) -2, x, then k¢F —%> x.
(TDF) Let ] be any set, ¢ : ] — X, ¢ : ] —> F] (X) such that ¢(j) — v(j) for each j ¢ J. If F ¢ F] (X) satisfies
k¢F —L> x, then o= (F) -5 x.

If we take J = X and + = idy in (TF) then we get the Kowalsky diagonal condition (TK).

Definition 3.1. A T-convergence space is called T-regular if it satisfies the condition (TDF).

3.1 T-regularity is a good extension of regularity

Let (X, Q) be a convergence space. We define §(X, Q) = (X,4(Q)) as

s
VF e F1(X), ¥x e X, F 2% x o (F) -2 x.

Thenitis easily seen that (X, §(Q)) is a T-convergence space. In this subsection, we shall prove that (X, §(Q))

is T-regular if and only if (X, Q) is regular. In this sense, we say that T-regularity is a good extension of

regularity.

Lemma3.2. Letf: X — Y,¢:] — F[(X)and & : ] — F(X). Then forany F € F[(J) and F € F(J), we
have:

(W) (keF) = k(f~ o 9)F,

(2) Take ®1 = ¢ o 6, then (k¢F) = K&1.(F),

(3) Take ¢1 = w o @, then (k1w (F)) = KOF,

(@) Ifo : ] — F[(X) satisfies o(j) < ¢(j) for any j € ], then koF < k¢F.
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Proof. (1) Forany X € LY, we have

NefT(koF) < f7 () e koF < A € o(F), s.tf~(N) e [ o(y)

yeA
< JAeu(F), stre ((f~ od)(y) = Xek(f~ o ¢)F.
yeA
(2) It follows by
A€ u(k¢F) < Ta € k¢F < IB e o(F), s.tTa e[ o(y)
yeB
<> dBe(F), s.tAe ﬂ(bo ) (y) = ﬂqﬁl(y)
yeB yeB

< A e K&1.(F).

(3) It follows by

Acu(kprw(F)) < Tackprw(F) < IBerow(F), s.tTac (o1 (¥) =[V(wo®)(y)
yeB yeB
< dBeF, s.tAe(\D(y)
yeB

< A e KoT.

(4) It is obvious. O

Theorem 3.3. (X, Q) satisfies (DF) if and only if (X, §(Q)) satisfies (TDF).

Proof. Let (X, Q) satisfy (DF). Assume that+ : ] — X, ¢ : ] — F; (X) such that ¢(j) 29 (j) foreachjeJ.
Take & = 1 o ¢, it follows by &(j) 2@ ¥(j) that
() = U6 () —> ¥ (i), Vi €.

Assume that k¢IF 2@ x, then by Lemma 3.2 (2) we have K&.(F) = (k¢F) -2, x. It follows by (DF) and Lemma
2.6 (5) we get
54 = Q
W(y7 (F)) =4~ («(F)) — x,
ie., v~ (F) 5(—02 x. Thus the condition (TDF) is satisfied.

Let (X, 6(Q)) satisfy (TDF). Assume that+ : ] — X, & : ] — F(X) such that &(j) LR ¥(j) foreachje]J.
Take ¢ = w o @, it follows by Lemma 2.6 (1) that

Lo 6(j) = Lowo B(j) = B(j) —> ¥(j),

. . 0(Q) . .
ie., ¢(j) — (j) foranyj € J.
Let K&F - x. Then by Lemma 3.2 (3) we get ¢(k¢w(F)) = K&F 2 x e, kow(F) %@ y 1t follows by
(TDF) that ¢~ (w(F)) 6(—02 x, and then by Lemma 2.6 (5), (1) we have
= = = Q
P (F) =y ((Low)(F)) =™ (w(F)) — x.

Thus the condition (DF) is satisfied. O

3.2 The category of T-regular T-convergence spaces is a reflective subcategory of
T-convergence spaces

In this subsection, we shall prove that the category of T-regular convergence spaces is a reflective subcategory
of T-convergence spaces.
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Afunction f : X — Y between two T-convergence spaces (X, q), (Y, p) is called continuous if f~ () RN

f(x) whenever F -4, X. The category T-CS has as objects all T-convergence spaces and as morphisms the
continuous functions.
It is proved in [6] that the category T-CS is topological over SET in the sense of [40]. Indeed, for a given

source (X R (Xis i) )ie1» the initial structure, g on X is defined by F L x e Viel, i (F) N fi(x%).

Let (X, g) be a T-convergence space, A a subset of X and iy : A — X the inclusion function. Then the
initial T-convergence structure on A w.r.t. the source iy : A — (X, q) is called the substructure of (X, g) on
A, denoted by g4, where

VxeA,FeFL(A),F % x < iy (F) -5 x.

The pair (X, ga) is called a subspace of (X, q).
Let X be a nonempty set and let T(X) denote the set of all T-convergence structures on X. If the identity
idx : (X, q) — (X, p) is continuous then we say q is finer than p or p is coarser than g, and denote p < q.

Proposition 3.4. (7(X), <) forms a complete lattice.

Proof. For any {q; }icr € T(X), the supremum q of {g; } s exists and is denoted as sup{g; }. Indeed, sup{q;}

d
is precisely the initial structures g w.r.t. the source (X RS (X, qi) )il 1€, @ = N{qi }icl- O

In the following, we denote the full subcategory of T-CS consisting of all objects obeying (TDF) as TDF-CS.

Theorem 3.5. The category TDF-CS is a topological category over SET.

Proof. We need only check that TDF-CS has initial structure. Assume that (X N (Xi, qi) )ier is a source in
T-CS such that each (X;, g;) € TDF-CS. Let g be the initial structure of the above in TF-CS, that is
F-Lx e Viel,f7(F) L fi(x).

We prove below that (X, g) €TDF-CS. Assume that ¢ : ] — X, ¢ : ] — F] (X) such that ¢(j) 4, ¥(j) for
each j e J. It follows that for any i € I, £ (6(j)) — fi(¥(j)). Take ¢; = £ o ¢ and v; = f; o ¥, then

6i(j) = i), VieJ.
Let k¢ 9, x. Then by Lemma 3.2 (2) we have Vi € I,
ki = k(f™ 0 $)F = fi~ (koF) = fi(x).
By (X, g;) satisfies (TDF) we have
U (F) = (fio )™ (F) = f747 (F) = fi(x).
It follows that 1= (F) — x. Thus (X, ¢) satisfies the condition (TDF). O

Let Tpr(X) denote the set of all T-convergence structures on X satisfying (TDF). Then it follows from the above
theorem and Proposition 3.4 we get the following corollary.

Corollary 3.6. (Tpr(X), <) forms a complete lattice.
Theorem 3.7. TDF-CS is a reflective subcategory of T-CS.

Proof. Let (X, q) €T-CS. From Corollary 3.6, the supremum in (T(X), <) of all s < g with s € Tpr(X), denoted
as (X,rq), is also in Tpr(X). Indeed, rq is the finest structure coarser than g satisfying (X, rq) ¢ TDF-CS.
Hence idy : (X, g) — (X, rq) is continuous. Assume that f(X, g) — (Y, p) is continuous, where (X, p) €
TDF-CS. Let s denote the initial structure w.r.t. f : X — (Y, p). Then (X, s) € TDF-CS and s is the coarsest
structure such that f : (X,s) — (Y, p) is continuous. It follows that s < g and so s < rq. Therefore, f :
(X,rq) — (Y, p) is continuous and thus TDF-CS is reflective in T-CS. O
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3.3 Extension of continuous function

In this subsection, based on T-regularity, we shall present an extension theorem of continuous function in
the framework of T-convergence space.

Lemma 3.8. Let (A, ga) be a subspace of a T-convergence space (X, q). If (X, q) fulfils (TK) then (A, qa) also
fulfils this condition.

Proof. Assume that ¢ : A — F] (A) satisfies ¢(y) — y for each y ¢ A. Take ¢ : X — F] (X) as
o(y) =i (¢(y))ify e Aand ¢(y) = [y]- if y ¢ A.

It is easily seen that (y) — y, ¥y € X.
Let F 24 x, then iy (F) 4 x By (X, q) satisfies (TK) we have koiy (F) 4 x. We prove below
iy (koF) 2 koiy” (F). Indeed,
e koiy (F) = 3B e (i (F))s.t. Yy e B, A e ¢(y)
by Lemma2.6 (5) == 3B eiy («(F))s.t. Yy e B, € ()
== AnBeuF)s.t.Vye AnB, e d(y)
= 3Cecu(F)s.t.VyeC,Aeiz (o(¥))
= 3Ceu(F)s.t. Vy e C, iz (\) € ¢(y)
= iy ()\) € k¢F
= Meiy (ko).
By koiy (F) —2, Xx we have iy (koF) 2, x, i.e., k¢F 2 x, as desired. Thus (X, ga) satisfies the condition
(TK). O

Proposition 3.9. Let (X, q) be a T-convergence space satisfying (TK) and (Y, p) be T-regularity. If A is a
nonempty subset of X such that a function ¢ : (A,qa) — (Y, p) is continuous, then ¢ has a continuous
extensionp : (B, qg) — (Y, p), where

B = {xeX|Cl(x) # @, {y|VF ¢ CL(x), o~ (ix (F)) 2> y} &},
Cl(x) = {F e F} (X)|ii (F) exists and F - x}.

Proof. (1) we prove that A ¢ B.
For z € A, note that [z]+ 2, zand iy ([z]+) exists, thus [z]+ € C[(z), which means C] (z) # @. Moreover,
for any FF € C] (z), we have iy (F) exists and F 2, z, then it follows that

iTis(F)2F -5 2z = iy (F) & 2.

By the continuity of ¢ we get that ¢~ (i5"(F)) — ¢(z). Thus z € B, and so A < B.

(QWeextend p: A — Ytog: B— Ybyp(z) = ¢(z)ifzec Aand p(2) = y;, if z € B - A, where y,
is some fixed element in {y|VF € C[(z), ¢~ (iy (F)) N y}. Next, we prove that g : (B,qg) — (Y,p) is
continuous. We need to check that for any G € F] (B) and any zo € B, that G A, 26 implies ™ (G) N 2(20).
We complete it by several steps as follows.

(I) We define a function ¢p : B— F| (B) as ¢p(z) = ig (H;) for any z € B, where H; € C] (z). Indeed, by
iy (H;) exists and A c B we get that iz (H) exists. Thus ¢p is well-defined. Note that (X, g) satisfies (TK), it
follows by Lemma 3.8 that (X, gp) also satisfies (TK). Thus by G LR zo and

515 (H:) 2 Hy 5 2 — ¢p(2) = i (Hs) 2 2,

we get that k¢pG LN 2o, i.e., iy (k¢pG) 4, Z0.
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(1) iy (k¢sG) exists. We need only check that \/,c4 A\(z) = T for any X\ € k¢pG. Indeed, it follows by
X € k¢pG that there exists an E € .(G) such that X € ¢g(e) = i (He) for any e € E. Then

7=V Sp(ip (1), A) <V Sa(ixip (n),ix (V) <V ((\{1“(2))_’(\{1“2)))'

peH, peH, peH,

Note that \/,c4 u(z) = T since u € He and i (He ) exists. It follows that \/,.4 A(z) = T,and so ij (k¢pG) exists.
(1) iy i5 (kosG) = iy (k¢sG). It follows by

Meiyipg (k¢gG) < \/ Sa(inig (u),A\)=T< \/ Sa(ia(u),)) =T < Neiy (kosG).
uekdpG nekdpG

A combination of (I)-(II) we have i7" (k¢sG) — zo and iy iz (k¢sG) = i (k¢pG) exists. It follows that
l?(kgbBG) € C}:(Zo).
(V) o= i5 (kopG) = =I5 iy (kpsG) - B(20). Indeed, if zo € A, then

iz ix iz (k¢sG) 2 iy (k¢pG) — 2o,

which means iy i (képG) 2, 7o, then by the continuity of p : A —> Y we get 0~ isiy (késG) = o(20) =

?(20)-
If zo € B- A, then

B(20) =z € {Y|¥F € C1(20), ¢ (i (F)) >y},
and by i3 (k¢sG) € C] (20), we conclude that ¢~ i i5 (k¢sG) — V2.
(V) Let ¢y : B— F] (Y) be the composition of the following three functions
B % FI(B) 5 FL(A) 25 FL(Y).

Note that for any z € B, (iy o ¢p)(2) =iy i (H;) exists since X € H, implies V,,e4 A(w) = T. Therefore, ¢y is
well-defined. Next, we check that k¢yG —— ©(20) and ¢y(2) RN ©(z) forany z € B.
() koyG - B(z0). At first, we prove that i5 (k¢sG) ¢ k(is o ¢5)G. Let A € i (k¢sG). Then
V,U.EI«#BG SA(IZ(ILL), /\) = T. Note that
e kppG = JE € 1(G)s.t.Ve € E, u € pp(e)

= JE e (G)s.t.Ye e E,iy (u) € (i o ¢p)(e)

— i (1) € k(if 0 ¢)G.
It follows that

7=V Sa(ix(w),) < V Sa(a(w), M) <V Sa(n, ),

nekdpG iy (p)ek(ifogp)G vek(izopp)G

which means X € k(i o ¢5)G. Thus iy (késG) € k(i o ¢5)G. Then by Lemma 3.2 (1) we have
¢~ (ia (kopG)) € ¢~ (k(ix © ¢8)G) = k(¢ oiy o ¢p)G = kéyG,

and by ¢~ 15 (kosG) - B(z0), it holds that k¢yG - B(zo).
(ii) ¢y (2) RN ©(z) for any z € B. Note that i, (i5" (¢5(2))) exists since

ia (i5 (¢5(2))) = ia (ip (ip (Hz))) = i (H).

Then by i7 (¢5(2)) = i3 (i5 (Hz)) 2 H, — z we obtain i (¢5(2)) € Cj (2).
If z € A, then
(i (¢(y)) = ix 15 (5 (if (H2))) 2 H, - z,
which means i5 (¢5(y)) 2 z and so ¢y(y) = ¢~i5 (¢5(y)) — ¢(z) = B(z) by the continuity of
p:A—Y.
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If ze B- A, then
B(2) € {yIVF € CL(2), ¢~ (ix (F)) >y},

and by ig" (¢5(2)) € C] (2), we conclude that o~ i i7" (#5(2)) 2, %(2). Note that
ia (i5 (¢5(2))) = ix (Hz) = iy ip (Hz) = iz (¢5(2)).

Thus ¢y (2) = ¢~ i3 (¢8(2)) — B(2)-
It follows from (i), (ii) and that (Y, p) satisfies (TDF) we get that 3= (G) — %(zo) for any G —2 z. This
means that 3 : (B, gg) — (Y, p) is continuous. O

A subset B of a T-convergence space (X, q) is said to be dense [6] if for each x ¢ X, there exists a T-filter F
such that i (F) exists and IF converges to x. (X, q) is called T-Hausdorff if for each 7-filter I, there exists at
most one x € X such that IF converges to x.

Theorem 3.10 (continuous extension theorem). Let (X, q) be a T-convergence space satisfying Kowalsky T-
diagonal condition (TK), and let (Y, p) be regular and T-Hausdorff. Then for each dense subset A in (X, q), a
continuous function ¢ : (A, qa) — (Y, p) has a unique continuous extensiong : (X, q) — (Y, p) if and only
if {y|VF € C] (x), ¢~ (i (F)) > y} + @ forany x € X.

Proof. Sufficiency. For any x € X, since A is dense in (X, q) then C](x) # @, it follows by {y|VF e
Cl(x), ¢~ (i (F)) 2> y} + @ and we have that

{x e X|CL(x) # &, {yIVF € CL(x), ¢~ (i (F)) =y} # &} = X.

From Proposition 3.9, we conclude that there exists a continuous extension of ¢, definedas g : X — Y:
Vx € X, p(x) = o(x) if x € A and p(x) = yx, if x € X — A, where yy is some fixed element in {y|VF €
C](x), ¢~ (i5 (F)) % y}. Note that the set {y|VF ¢ C] (x), ¢~ (i5 (F)) = y} has only one element since
(Y, p) is T-Hausdorff. This means that i is defined uniquely.

Necessity. Assume that ¢ has a continuous extension  : (X, q) — (Y, p). Then we have that g~ (F) RN
?(x) for any F —Z» x. Next we check that 3= (F) < o~ (i (F)) whenever i5 (F) exists. Indeed, for any
A e T, it is easily seen that o~ (i3 (\)) <@ (M) andso g (A) € ¢~ (i (F)). It follows by Lemma 2.5 (1) that
@~ (F) < = (i (F)).

For any F € C] (x), which means F -2, xand iy (IF) exists. From the above statement we observe easily
that = (i5"(F)) - B(x). Therefore, {y|VF ¢ Cl(x), ¢~ (iy (F)) Lyt 2o O

4 Conclusions

In this paper, we defined a notion of T-regularity for T-convergence spaces with the use of an extending dual
Fischer diagonal condition, which is based on extending Kowalsky compression operator. It is proved that
T-regularity is a good extension of regularity, and the category of T-regular T-convergence space is a reflective
category of T-convergence spaces. In addition, based on T-regularity, we explored an extension theorem of
continuous function.
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