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Abstract: In this paper we construct a class of virus dynamics models with impairment of B-cell functions.
Two forms of the incidence rate have been considered, saturated and general. The well-posedness of the
models is justified. The models admit two equilibria which are determined by the basic reproduction number
Ry. The global stability of each equilibrium is proven by utilizing Lyapunov function and LaSalle’s invariance
principle. The theoretical results are illustrated by numerical simulations.
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1 Introduction

The study of within-host virus dynamics using mathematical modeling has been an interesting topic to
research in the last decades. A proper model could provide insights of a better understanding of the virus
dynamics and clinical treatments used to fight against it. In an infection process, the interaction between
viruses and cells can be seen as an ecological system within the infected host. A wide of mathematical models
focused on exploring the interaction between three basic compartments, uninfected cells (U), infected cells
producing viruses (I) and viruses (P). A basic model of virus dynamics was originally developed by Nowak
and Bangham [1] which has become highly used by experimentalists and theorists (see e.g., Nowak and May
[2]). The model presented in [1] is given by:

U=p-~U-wUP, (1
I=wUP-BI, )
P =xI-¢P, 3

where U, I and P are the concentrations of uninfected cells, infected cells and viruses, respectively. The
parameters g, v, w, B, » and ¢ are positive. The full description of the model was given in [1]. A huge number
of papers have been published as extension of the basic model (see, e.g., [3-22]).

The immune response plays a critical role in controlling the virus spreading. The specificity and memory
in adaptive immune responses are the responsibility of lymphocytes. B cells and T cells are the two main
types of lymphocytes. The function of T cells is to recognize and kill infected cells, while the function of B
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cells is to produce antibodies which bind to virus particles and mark it as a foreign structure for elimination
by other cells of the immune system. Antibody alone can neutralize, and thus protect against, viruses [23].
The virus dynamics model with B cell immune response was presented by Murase et al. [24] as

U=p-~U-wUP, (4)
I=wUP-BI, 5)
P=I-&P-pPC, (6)
C=ePC-pucC, @

where C is the concentration of B cells. Many extended models are developed with B cell immune response
(see, e.g., [25-36]).

In certain circumstances, some viruses can suppress immune response or even destroy it especially when
the load of viruses is too high. Models with T cell immune impairment were studied several times (see, e.g.,
[37-40]). In addition, there are factors affect B cell function and cause the impairment of B cell [41-43].
These factors include the following; malnutrition, tumors, cytotoxic drugs, irradiation, aging, trauma, some
diseases (e.g., diabetes) and immunosuppression by microbes, e.g., malaria, measles virus but especially HIV
[23]. In a very recent work, Miao et al. [44] have proposed a virus dynamics model which includes: humoral
impairment, time delay, reaction-diffusion, and logistic growth of the target cells. Due to the complexity of
the model presented in [44], the global stability analysis of the model’s equilibria did not studied. Studying
the global stability of equilibria for virus dynamics models will give us a detailed information and enhances
our understanding about the virus dynamics. Therefore, many mathematician have paid great efforts to study
global stability of systems in virology (see, e.g., [7-19] and [45-54]) and epidemiology (see, e.g., [55-57]).

In [44], the incidence rate of infection is given by bilinear. In reality, the bilinear incidence may not
accurate to characterize the virus dynamics during different stages of infection especially when the concen-
tration of the viruses is high [8]. Therefore, in the present paper, we propose viral infection model with B-cell
impairment and with two nonlinear forms of the incidence rate, saturation and general. We show that the
solutions of the model are nonnegative and bounded. The global stability of the equilibria is established by
constructing Lyapunov functions and applying LaSalle’s invariance principle.

2 Model with saturation

In this section we propose a virus dynamics model including B-cell impairment and saturated incidence as:

. wUP
U=o-7U- 1+aP’ 8
wUP
“1rap Pb ©)
P =3I-&P-pPC, (10)
C=¢eP-uC-9cCp, (11)
where, PC is the B-cell impairment rate and a > O is a saturation constant.
2.1 Basic properties
We define the compact set
Q-= {(U,I,P, C)eRY:0< Ussl,OsIssl,OsPssz,OsCss3} 12)

wheres; >0,i=1,2, 3.
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Proposition 1. The set Q is positively invariant for model (8)-(11).

Proof. We have
Ulyo=0>0,
: wUP
I|j—0= 1+aP20’ when U,P 20,
Plpoo= I =0, when [ = 0,
Clceo=€P =0, when P = 0.

Thus Ri‘o is positively invariant for model (8)-(11). Let F(t) = U + I + B P + ’8 5 C then

F(t)=g—wU—1‘"+UfP 1w+l;PP—ﬁI Br- BéVP ﬁpPC+fiP fg’;c ffipc
=Q_7U_E1_ﬁp_(ﬁi+@>Pc ﬁ@C

22 bex Qe

coqu-Br BEp B

48%

B Bs

<p- 0<U+I+2 P+4€%
=0 - oF(f),

where ¢ = min {7, g, g,y}.Then,
e _0) ot
F(t) < 5 (F(O) 0) e .

Then, O < F(t) < s1,if F(0) < s, fort > Owheres; = %. Hence, 0 < U(t), I(t) < s1,0 < P(t) < s, and 0 < C(¢) < s3

forall ¢t > 0if U(0) + I(0) + £P(O) + ﬁC(O) < sy, wheres; = 2251 and s3 = Agxs . This guarantees that
2z L B Bé
the solutions of the model are bounded. O
The basic infection reproduction number for model (8)-(11) is given by:
oW
Ro= S22,
°" &y
Lemma 1. Consider model (8)-(11), we have
(i) if Ro < 1, then the model has only one equilibrium point EPg,
(ii) if Ry > 1, then the model has two equilibria EPy and EP;.
Proof.
At any equilibrium EP(U, I, P, C) we have
wUP
0= 4p =0 =
wUP
1+aP_BI_0’ (14)
sl - &P - pPC =0, (15)
eP-uC-9CP=0. (16)

From equations (13)-(16) we get an infection-free equilibrium EPqy = (Up, O, 0, 0), where U, = % and a unique
endemic equilibrium EP; = (Uy, I1, P1, C1), where

__o(+aPy) I - owP(1+ aPq) p =—b+\/b2—4ac C. - P,
y+ayPr+wP;’ ' B(y+ayPr+wPy)’ ! 2a SR T
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where
a = Bévyad + BEw + Bypea + Ppew,
b = BEy3 + BEypa + fpey + Béuw — pwdx,
¢=Bévu(1-Ro).
Then the equilibrium EP; exists when Ry > 1. O

2.2 Global properties

Define a function G(u) = u — 1 - In u. Clearly G(u) = 0, for u > 0 and G(1) = 0. The global stability analysis of
the two equilibria of model (8)-(11) will be established in the next theorems.

Theorem 1. Let Ry < 1, then the infection-free equilibrium EP, of model (8)-(11) is globally asymptotically
stable.
Proof. Construct a Lyapunov function Ly(U, I, P, C) as

U

L0=U()G (U—O) +I+§P+§(1—RO)C.

Calculating % as:

dLo _ (., Uo _ . wUP wUP B b B¢ . o
Tt_<1 ﬁ) (Q ~U 1+aP)+1+aP BI+;(%I &P pPC)+a(1 Ro) (eP — uC - 9CP)

S (1—%) (U—UO)—%PC—g(l—RO)PC+ (;‘f{fp—%+%(1—R0)>P—%(1—RO)C

_ 2
=-M- <%’+%(1-RO)> PC—%(l—RO)C—%PZ.

Since Rq < 1, thenforall U, P, C > O we have dstO < 0. Moreover, % = 0when U(t) = Uy and P(t) = C(t) = 0.
dLo

LetDg =< (U,I,P,C): dr = 0 ; and M, be the largest invariant subset of Dg. The trajectory of model (8)-(11)
tends to My [58]. All the elements of M, satisfy U(t) = Uy and P(t) = C(t) = 0. Then Eq. (10) we get

P()=0=3I(t), = I(t)=0.

Hence, My = {EPy}. From LaSalle’s invariance principle, we derive that if Ry < 1, then EPy is globally
asymptotically stable. O

Theorem 2. Let R, > 1, then the endemic equilibrium EP; of model (8)-(11) is globally asymptotically stable.

Proof. Construct a Lyapunov function L,(U, I, P, C) as
_ u I B P Bp A2
L1—UlG <m>+llG(H>+;P1G <P71)+72%(S—19C1) (C Cl) .
Note that from the equilibrium condition Eq. (16) that

uCy
e-9Cq = > 0.
1="p,

Then dLy is given by:

dt
L, (. U\ (. . wUP L\ [ wUP
W‘(l U)(@ i 1+aP)+(1 I)(1+¢xP BI)
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+g (1—%) (%I—.{P—pPC)+%(C—Cl)(sP—yC—SCP)

(1-U),_ wU,P  wUP I Bs, Bp Py Bs’
_(1 )(g )+ T as T gp 1 TB - P TOPC-B I

Bpplc ﬁi(c C1)(eP - uC - 9CP).

(e~ 9C1)
From the equilibrium conditions, we have:
_ a)U1P1
Q_’YU1+ 1+aP1’
_ w U1P1
Bl = 1+aP;’

%11 = €P1 +pP1C1,
£P1 = ].lCl + 3P1C1.

Utilizing the conditions of EP;, we get

&:<1_ﬂ) (’YUl"' wU, Py _'YU) + wU, P wUP I

dt U 1+aPq 1+aP 1+aP 1

wU. Py _ BS _ILP Py Bsp L Bp
+1+aP1 %P PC B I+ P1+ P1C

%(C C1) (eP~ uC— 9CP - Py + pCy + 9C1 Py).

Simplifying the result, we obtain

dly __y(U-Uy®  wUiPy (2_5) , WUIP _ wUP I

dt U 1+aP; U 1+aP 1+aP T
B p_ by lip ~ WU Py Pil
A Ty 3§ T
PP (€ Cy)(eP-puC—9CP - €Py + uCy + 9C1 Py + 9C1P - 9C,P)

T (e~ 9C)
+B£(P—P1)C1—B£(P_P1)C1

U PI

v (U - Uy)? , @UiPy (o Ui P\ wUP; P(L+aPy)
U 1+aP; 1+aP; P1(1+aP)

_ CUU1P1 (1+{XP1) UPIl _ E B
T+ab; 1+ aP) Ul & - PDE+PC)

Popopyc-cyr P8 c-coe-py

(e - 9C1)
e e € O gy € G P € o P

_y(U-U)*  wUiPy (, U P (1+aPy)UPIL
U 1+(XP1 U PIl (1+aP) U1P11
(l)U1P1 P(]. +aP1) (UU1P1 ﬂ _ ﬁl
“1+aPP,(1+aP) 1+aP, P, (P=P)(C-C)

Bp(e-9C1) _ Bp (I“'SP) A2

(e —9C,) (C-C)P-Py)- (e —9Cy) (C-C)

7(U—U1)2+a}U1P1 4_E_M_(lﬂxPl)UPll_ 1+aP
U 1+aP;q U PIL (1+aP)U,P1I 1+aP,

_Bp(y+8P)(C_C1)2+wU1P1 (P(1+aP1) P, 1+aP>

»x(e-9Cy) 1+aP, \P;(1+aP) P; ~ 1+aP,

v (U -Uy)? , @UiPy < U, P (1+aP,)UPIL 1+aP>

U 1+aP, \ U PI, (1+aP)U;P;I 1+aP;
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_BowOP) o o2 awUi(P- Py’
x(e-9C1) (1+aP)(1+aP;)*

Using geometrical mean (GM) and arithmetical mean (AM) inequality
AM > GM, (17)

we get
4 < E+E+ (1+aP;)UPL . 1+aP.
U PIl (1+aP) U1P11 1+aP1

Thus forall U, I, P, C > 0 we have % < 0. In addition % =0whenU =U;,I=1;,P=P;and C = C;. Let
dL,

D, = {Wl(U, I,P,C): ai - 0 ; and M; be the largest invariant subset of D;. Clearly M; = {EP; }. Applying
LaSalle’s invariance principle we obtain that if Ry > 1, then EP; is globally asymptotically stable. (]

3 Model with generalincidence rate

In this section we propose a model with more general incidence rate function 6(U, P) as:

U=0-+U-6(U,P), (18)
I=06(U,P)-pI, (19)
P =I-&P-pPC, (20)
C=¢eP-uC-9PC, (21)

We need the following Assumptions of the function (U, P):
(A1) O(U, P)is continuously differentiable, @(U, P) > 0, and (0, P) = ©(U,0) = OforallU > 0and P > 0,

00(U, P) 50 00(U, P)
oU > oP

d (06(U,0)
(A3) vl <6P) >0forall U > 0,

00(U, 0)

(a2) P

>0, and >0forallU>0andP > 0,

e(U, P)
P
One can show that the set Q given by Eq. (12) is positively invariant for model (18)-(21).

(A4) is decreasing with respect to P for all P > 0.

Lemma 2. Assume that Assumptions (A1)-(A4) are satisfied, then there exists a threshold parameter Rg >0
such that:

@) if Rg < 1, then the model has only one equilibrium point EPy; and

(ii) if RS > 1, then the model has two equilibria EPy and EP;.

Proof. At any equilibrium EP(U, I, P, C) we have

0-7U-06(U,P)=0, (22)
o(U,pP)-BI=0, (23)
sl - &P - pPC =0, (24)
eP-uC-9CP=0. (25)
From Eq. (25), we have
eP
C= 2+ 9P’ (26)
and from Eq. (24), we get
_p pe( P
I_%+% u+9P )" 27)
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Now from Egs. (27) and (22)-(23), we obtain

_o_(Bsp Bpe( P
v-7 (T% (wp)) 8
Let /3:‘,’ ﬂ e
o pe
v - Fp P2 ()

Therefore, we can write U as U = ¥(P). Note that ¥(0) = ;
From Egs. (27) and (22)-(23), we have

2
o(¥(P), P) - ﬂFP pe (yf&Pﬂ 0. (29)

Observe that, P = 0 is a solution of Eq. (29). Then from Egs. (26)-(28), we have U = Ug, I = 0, and C = 0. Then
we get an infection-free equilibrium EP, = (Uy, 0, 0, 0).

Let 13 ?
= P p£ P
H(P)=6(¥(P),P)-B [ ( U+ spﬂ

then H(0) = 0. Let P be such that ¥(P) = 0, i.e.,
2
Uo - B¢+ Psp_ Bps P _o,
kd u+39P

which gives ,
(Bpe + BEYP” + (Béu — 759U0)P — v52uUp = 0. (30)
Thus, the positive solution of Eq. (30) is given by

_ (y39Uo - B&u) + /(B — v729Uo)? + 4~uUo(Bpe + B&9)

2(Bpe + p&9)
£t (i) 205 () o
u+9P ¥ u+39pP

ol

We can see that

H(P)=6(0,P)-

Moreover, R
TN L R
Assumption (A1) implies that w =0, then
o) - 2000 Be_BE (2 00000 y).
Therefore, if 13%5 66(52, 0) > 1, then H'(0) > 0 and 3P; € (0, P) such that H(P;) = 0. Let us define
Rg _ 16@(U0,0),
BS  op

which represents the basic reproduction number. Now, let
g(U)=p-4U-06(U,P1)=0

Then we have g(0) = p > 0 and g(Up) = -6(Uy, P1) < 0. Assumption (A2) implies that g(U) is a strictly
decreasing function of U, and then there exists a unique U; € (0, Up) such that g(U;) = 0. Moreover, from
Egs. (26) and (27), we have

_ £P1
1_}1+3P1 >O’
121 ps Pi
L= » u+39P; > 0.

Therefore, an endemic equilibrium EP; = (U4, I1, P1, C1) exists if Rg > 1. d
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3.1 Global stability of equilibria

The global stability analysis of the two equilibria of model (18)-(21) will be investigated in this section.

Theorem 3. Let Rg > 1, then the infection-free equilibrium EP, of model (18)-(21) is globally asymptotically
stable.

Proof. Construct a Lyapunov function Zy(U, I, P, C) as

U

T 0(Uo, P) Bo. BS (i e

Zo=U-Up- [ fim 500 d)1+I+;P+8—%(1 RO)C.
Uo

Calculating % as:

(1 i O

ar = im, Q(U,P)) (g—'yU—@(U,P))+@(U,P)—ﬁI+%(%I—§P—pPC)

. % (1-R§) (eP - uC - 9PC)

(. . 60U, P) 0(Uo,P) BE, Pp
_(1 P1—1>II(1>*79(U,P))(Q U)+6(U, P) lim “opees - E2P - ERPC

+[ij (1—R8>P—‘B€i}’; (1—R8)C—ii%8 (1—R0)Pc

P _ 6(Uo, P) 0o, P) PERG ,, PBéu G
-0 yU)(l lim o P)>+@(U P) lim S 0p- = (1 R)c

_{mg(l_zeg)]pc

»

_ U 00(Uy, 0)/0PY | BERS [O(U, P) 00(Uy, 0)/oP
=1 (l UTJ) (1 26(U, 0)/ap>+ pa { BERGP  96(U, 0)/9P 1}P

/3‘(" (1 R )c [ﬁp B9 (1 R )}PC.

From the Assumptions, we have the first term is less than or equal to zero. In addition,

OW.P) . OWU.P) _36(U,0)
P “pho- P oP

forall U > 0. Then
»0O(U, P) 00(Uy, 0)/0P . = 00(Uy, 0)

BERGP 06(U,0)/0P ~ BeRC oP
It implies that
dZo _ u 00(Uo, 0)/oP\  Béu G Bp , BS9
dt U°< UO) (1_66(U,O)/6P> £ (1 R)C [% (1 R)}PC

Therefore, if Rg < 1, then dZo < Oforall U, P, C > 0. Similar to the proof of Theorem 1, one can show that
EP is globally asymptotically stable. [J

Theorem 4. Let RS > 1, then the endemic equilibrium EP; of model (18)-(21) is globally asymptotically stable.

Proof. Define Z,(U, I, P, C) as

U
g [ 6, P1) B Bp A2
Zl =U U1 7@(}1,131) d)’l I1G< ) PlG (P1> +72%(€—L9C1) (C Cl) .
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Then % can be calculated as:

dz 6(Uy, P1) I
- (- S -t (1) -
B

+;<1 Pl)(%[ £p - pPC)+%(C C1)(eP - uC - 9PC).

Using the equilibrium condition, eP; — uC; — 9P C; = 0, we have

azy _(,_6WUy P\ 6, P) I
G- (1- By v+ ew PG - Fow.p
_%p_%PC—ﬁ%I+§P1+%P1C
Bp

t o e-9Ch) (C~C1)(eP—~puC~9PC~ Py + uCy + 9P1C1 + IPCy - 9PC)

Poppye - popye

- — M — 6(U15P1) _ 171
- (1 o(U, Py) > (e-~U)+6(U.P) oU,p,) 1

Bp Pi. BE, | Bp Bpe
- ;PC—ﬂ?I+ ;Pl + ;P1C+ ~(e-9C)
Bpu 2__ PpdP 2
T x(e-9Cy) (€= - »x(e-9Cy) (€-C)
BpICy

_m(c‘cl)(P‘P1)+ﬁ;p(P—P1)C1—B;p(P—Pl)Cl.

o(U, P) + BI, - %P

(C-C)(P-Py)

From the equilibrium conditions, we have

BI]. = @(Ul’ P]_)a
0 =7U1+ph.
Applying these conditions, we obtain

A (1 - 7%({{}’5 1))) (Us + Bl - 1) + Bly

+ﬁ;p(P—P1)Cl—’ij(P—P1)cl

B e(U,, P1) 0(Uy, P1) oe(U, P) 1,0(U, P)
- (1 "o, Py) ) (UL =7 +BL (2 "o, Py) > *Bhigw, py ~Pliey, Py

oW, L
Q(Ua Pl) I

@(U, P) +ﬁ11 - % (P—Pl)

€-co@-p- I - ey

Ee-ry@ipcy-2e-pyc-co-prpp P2 c-coe-py
(S o - S5
8 (o079 i)-%w-clf

(,_e(u,Py) ) _0(Uy,Py)  LOW,P) P POU,Py)
- (1 e, P,) ) (U1 =2U) + BL {4 e(U,p, 16(U,P,) PL P,0(U, P)}
o,p) P PO, P,)]  Bp(u+ 9P)

+Bh {O(U, Py P, 1t Bem, P)} T 2 (e-9Cy)

U, <1_ g) (1_ @(Ul,P1)> + B, {4_ 0, P1) §L6W,P) Pil P@(U,Pl)}

U e(U, Py) e(,P,) 16(U,,P;) PILi P,6(U,P)

(C-C1)°
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e(U,P) P 0(U,P)\ o (u+ 9P) )
AL (@(U,Pl) ) PT) (1_ o(U, P) > " e -9cy E G

From Assumptions (A2) and (A4) we have
U 0(U, P1)
1-— 1-——>F"-=1¢<0,
( Ul)( 6(U,P) ) ©

ow,p) P 1 e(U, P;) <0
(@(U,Pl) E)( @(U,P))‘ :

Therefore, using inequality (17) we get that for all U, I, P, C > O we have ddZt1 <0and % = 0 if and only if
U=Uy,I=1I,P=P;and C = Cy. Applying LaSalle’s invariance principle, we obtain that if R§ > 1, then
EP; is globally asymptotically stable. O
4 Numerical simulations
We conduct numerical simulations for model (18)-(21) with specific incidence rate function
wUP
0. P) = 1 s Pra,U
Then we get following model with Beddington-DeAngelis functional response:
: wUP
U‘Q"YU_W, (31)
wUP
“Traprau Pl G2
P =I-&P-pPC, (33)
C=¢eP-uC-9PC, (34)

where w is a positive parameter, while a; and a, are non-negative parameters. We note that if a; = a, = 0,
then we obtain a model with bilinear incidence, if a; # 0 and a, = 0, then we get saturated incidence which
given in model (8)-(11), and if a; = O and a, # 0, then we obtain Holling type-II. We can easily see that O(U, P)
is continuously differentiable function. Moreover, O(U, P) satisfying the following conditions:

We have
00(U,P)  wP+aiwP? 00(U,P)  wU+a,wU?

oU  (Q+aP+ayU)?’ oP  (1+a;P+ayU)2’
then O(U, P) is continuously differentiable. Moreover, O(U, P) > 0, and ©(0, P) = O(U,0) =0 forall U > O
and P > 0. Thus (A1) is satisfied.

. 00(U, P) 00(U, P) 00(U, 0) . wU . .
Since 30 >0, 5P > 0, and 3P " 1+a,U > 0 for all U > 0, then (A2) is satisfied.
We have 4 /o6 )
o(U,0)\ _ w
W( 5P >_(1+a2U)2>OforallU20,
then (A3) is satisfied.
Finally we have
o (6(U,P)\ -a1wU
3P ( P ) “ A Pyl <0, forall P=0,

then (A4) is also satisfied.
The basic reproduction number of model (31)-(34) is given by

RG _ %(UUO .
0" BEQ + ayUp)
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Figure 1: Solution trajectories of system (31)-(34) in case a; = a = 0.
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Figure 2: Solution trajectories of system (31)-(34) for different values of a; when a; = 0.
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Figure 3: Solution trajectories of system (31)-(34) for different values of @, when a; = 0.
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In the numerical simulations we fix the values of parameters p = 10, »x = ¢ = 3, p = 0.1, u = v = 0.01,
B=0.3,e=0.2and vary w and 9

Case(1): Effect of w on the stability of equilibria.

For this case, we take a; = @, = 0 and 9 = 0.01. We choose three different initial conditions as:
IC1: U(0) = 700, I(0) = 5, P(0) = 5, C(0) = 0.5,

IC2: U(0) = 400, I(0) = 10, P(0) = 10, C(0) =1,

IC3: U(0) = 300, I(0) = 20, P(0) = 15, C(0) = 1.5.

We consider two values of the parameter w as:
(i) w = 0.0001, then we compute RS = 0.3333 < 1. Figure 1 shows that, for all IC1-IC3, the solution of the
model tends to EP, = (1000, 0, 0, 0). It means that, EP, is globally asymptotically stable.
(ii) w = 0.001, then we compute Rg = 3.3333 > 1. Figure 1, shows that the solutions of the model converge
to the equilibrium EP; = (482.9,17.23,10.7, 18.29) for all IC1-IC3. Then, EP; is globally asymptotically
stable.

Case(2): Effect of the saturation infection on the virus dynamics.

In this case, we take @, = 0 and 9 = 0.01. We choose w = 0.001, and a; varied. Moreover we consider the
initial condition IC2. Figure 2 shows that as a; is increased, the concentrations of the uninfected target cells
is increased, while the the concentration of infected cells, virus particles and B cells are decreased. We note
that the parameter a; has no effect on the stability of equilibria

Case(3): Effect of Holling type-II.

For this case, we take a; = 0, w = 0.001, and 9 = 0.01 then (U, P) represents the Holling type-II. Let us
choose the initial condition IC2. We suggest different values of a, to see its effect on the model as we can see
in Figure 3. Moreover, we have the following cases:

(i) EP; is globally asymptotically stable when O < a, < 0.0023,

(ii) EPy is globally asymptotically stable when a, > 0.0023.

This means that a, can play the role of controller which can be designed to stabilize the system around the
infection-free equilibrium EP,.

Case(4): Effect of the B cell impairment parameter 9.
In this case, we take a; = 0.01 and a, = 0.002. We choose w = 0.001, and 9 varied. Moreover, we consider
the following initial condition

IC4: U(0) = 700, I(0) = 10, P(0) = 10, C(0) = 10.

Figure 4 shows that as Jis increased, the concentrations of infected cells and virus particles are increased,
while the concentration of uninfected cells is decreased. We note that the parameter 9 has no effect on the
stability of equilibria.

Acknowledgement: This project was funded by the Deanship of Scientific Research (DSR), King Abdulaziz
University, Jeddah, Saudi Arabia under grant no. KEP-MSc-33-130-40. The authors, therefore, acknowledge
with thanks DSR technical and financial support.

References

[1] Nowak M., Bangham C., Population dynamics of immune responses to persistent viruses, Science, 1996, 272, 74-79.

[2] Nowak M., May R., Virus dynamics: mathematical principles of immunology and virology, Oxford university press, 2000.

[3] Perelson A., Nelson P., Mathematical analysis of HIV-1 dynamics in vivo, SIAM Rev., 1999, 41, 3-44.

[4] Callaway D., Perelson A., HIV-1infection and low steady state viral loads, B. Math. Biol., 2002, 64, 29-64.

[5] Roy P., Chatterjee A., Greenhalgh D., Khan Q., Long term dynamics in a mathematical model of HIV-1infection with delay in
different variants of the basic drug therapy model, Nonlinear Anal-Real., 2013, 14, 1621-1633.

[6] LeenheerP., Smith H., Virus dynamics: A global analysis, SIAM J. Appl. Math., 2003, 63, 1313-1327.

[71 SongX., Neumann A., Global stability and periodic solution of the viral dynamics, J. Math. Anal. Appl., 2007, 329, 281-297.



1448 =—— Ahmed M. Elaiw, Safiya F. Alshehaiween, and Aatef D. Hobiny DE GRUYTER

(8]

9]

[10]
[11]

[12]
[13]
[14]
[15]
[16]
[17]
[18]
[29]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
(31]
[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]

Huang G., Takeuchi Y., Ma W., Lyapunov functionals for delay differential equations model of viral infections, SIAM J. Appl.
Math., 2010, 70, 2693-2708.

Georgescu P., Hsieh Y., Global stability for a virus dynamics model with nonlinear incidence of infection and removal, SIAM
). Appl. Math., 2006, 67, 337-353.

Li M., Shu H., Global Dynamics of an in-host viral model with intracellular delay, B. Math. Biol., 2010, 72, 1492-1505.

Li M., Shu H., Impact of intracellular delays and target-cell dynamics on in vivo viral infections, SIAM J. Appl. Math., 2010,
70, 434-2448.

Hattaf K., Yousfi N., Tridane A., Mathematical analysis of a virus dynamics model with general incidence rate and cure rate,
Nonlinear Anal-Real., 2012, 13, 1866-1872.

Korobeinikov A., Global properties of basic virus dynamics models, B. Math. Biol., 2004, 66, 879-883.

Elaiw A., Global properties of a class of HIV models, Nonlinear Anal-Real., 2010, 11, 2253-2263.

Elaiw A., Global properties of a class of virus infection models with multitarget cells, Nonlinear Dynam., 2012, 69, 423-435.
Elaiw A., Almuallem N., Global properties of delayed-HIV dynamics models with differential drug efficacy in cocirculating
target cells, Appl. Math. Comput., 2015, 265, 1067-1089.

Elaiw A., Almuallem N., Global dynamics of delay-distributed HIV infection models with differential drug efficacy in cocircu-
lating target cells, Math. Method. Appl. Sci., 2016, 39, 4-31.

Elaiw A., Hassanien I., Azoz S., Global stability of HIV infection models with intracellular delays, J. Korean Math. Soc., 2012,
49,779-794.

ElaiwA., Azoz S., Global properties of a class of HIV infection models with Beddington-DeAngelis functional response, Math.
Method. Appl. Sci., 2013, 36, 383-394.

Elaiw A., Global dynamics of an HIV infection model with two classes of target cells and distributed delays, Discrete Dyn.
Nat. Soc., 2012, Article ID 253703.

Gibelli L., Elaiw A., Alghamdi M., Althiabi A., Heterogeneous population dynamics of active particles: Progression, muta-
tions, and selection dynamics, Math. Method. Appl. Sci., 2017, 27, 617-640.

Bellomo N., Tao Y., Stabilization in a chemotaxis model for virus infection, Discrete Cont. Dyn-S., 2020, 13, 105-117.
Lydyard P., Whelan A., Fanger M., Instant notes in immunology, Taylor & Francis e-Library, 2005.

Murase A., Sasaki T., Kajiwara T., Stability analysis of pathogen-immune interaction dynamics, J. Math. Biol., 2005, 51, 247-
267.

Wang T., Hu Z., Liao F., Stability and Hopf bifurcation for a virus infection model with delayed humoral immunity response,
J. Math. Anal. Appl., 2014, 411, 63-74.

Elaiw A., AlShamrani N., Global stability of humoral immunity virus dynamics models with nonlinear infection rate and
removal, Nonlinear Anal-Real., 2015, 26, 161-190.

Wang T., Hu Z., Liao F., Ma W., Global stability analysis for delayed virus infection model with general incidence rate and
humoral immunity, Math. Comput. Simulat., 2013, 89, 13-22.

Elaiw A., AlShamrani N., Stability of a general delay-distributed virus dynamics model with multi-staged infected progres-
sion and immune response, Math. Method. Appl. Sci., 2017, 40, 699-719.

Elaiw A., Alshaikh M., Stability analysis of a general discrete-time pathogen infection model with humoralimmunity, . Differ.
Equ. Appl., 2019, DOI:10.1080/10236198.2019.1662411.

Elaiw A., AlShamrani N., Stability of an adaptive immunity pathogen dynamics model with latency and multiple delays,
Math. Method. Appl. Sci., 2018, 36, 125-142.

Elaiw A., AlShamrani N., Stability of a general adaptive immunity virus dynamics model with multi-stages of infected cells
and two routes of infection, Math. Method. Appl. Sci., 2019, DOI: 10.1002/mma.5923.

Elaiw A., Elnahary E., Analysis of general humoral immunity HIV dynamics model with HAART and distributed delays,
Mathematics, 2019, 7, Article number: 157.

Elaiw A., Almatrafi A., Hobiny A., Hattaf K., Global properties of a general latent pathogen dynamics model with delayed
pathogenic and cellular infections, Discrete Dyn. Nat. Soc., 2019, Article ID 9585497.

Lin J., Xu R., Tian X, Threshold dynamics of an HIV-1 virus model with both virus-to-cell and cell-to-cell transmissions,
intracellular delay, and humoral immunity, Appl. Math. Comput., 2017, 315, 516-530.

Pan S., Chakrabarty S., Threshold dynamics of HCV model with cell-to-cell transmission and a non-cytolytic cure in the
presence of humoral immunity, Commun. Nonlinear Sci., 2018, 61, 180-197.

Miao H., Teng Z., Kang C., Muhammadhaji A., Stability analysis of a virus infection model with humoral immunity response
and two time delays, Math. Method. Appl. Sci., 2016, 39, 3434-3449.

HuZ.,Zhang).,WangH., MaW., Liao F., Dynamics analysis of a delayed viral infection model with logistic growth and immune
impairment, Appl. Math. Model., 2014, 38, 524-534.

Regoes R., Wodarz D., Nowak M., Virus dynamics: the effect to target cell limitation and immune responses on virus
evolution, J. Theor. Biol., 1998, 191, 451-462.

WangS., Song X., Ge Z., Dynamics analysis of a delayed viral infection model with immune impairment, Appl. Math. Model.,
2011, 35, 4877-4885.

Elaiw A., Raezah A., Azoz S., Stability of delayed HIV dynamics models with two latent reservoirs and immune impairment,
Adv. Differ. Equ-Ny., 2018, Article number: 414.



DE GRUYTER Global properties of virus dynamics with B-cell impairment = 1449

[41]
[42]
[43]
[44]
[45]
[46]
[47]
(48]
[49]
(50]
[51]
(52]
(53]
(54]
(55]
[56]
(57]

(58]

Milito A., B Lymphocyte Dysfunctions in HIV Infection, Curr. HIV Res., 2004, 2, 11-21.

Amu S., Ruffin N., Rethi B., Chiodi F., Impairment of B-cell functions during HIV-1 infection, AIDS, 2013, 27, 2323-2334.
Chiodi F., Scarlatti G., Editorial: HIV-Induced damage of B cells and production of HIV neutralizing antibodies, Front.
immunol., 2018, 9, Article number: 297.

Miao H., Abdurahman X., Teng Z., Zhang L., Dynamical analysis of a delayed reaction-diffusion virus infection model with
logistic growth and humoral immune impairment, Chaos Soliton. Fract., 2018, 110, 280-291.

Wang W., Ma W., Feng Z., Dynamics of reaction-diffusion equations for modeling CD4" T cells decline with general infection
mechanism and distinct dispersal rates, Nonlinear Anal-Real., 2020, 51, Article number: 102976.

Wang W., Ma W., Feng Z., Complex dynamics of a time periodic nonlocal and time-delayed model of reaction-diffusion
equations for modeling CD4™* T cells decline, J. Comput. Appl. Math., 2020, 367, Article number: 112430.

Elaiw A., Abukwaik R., Alzahrani E., Global properties of a cell mediated immunity in HIV infection model with two classes
of target cells and distributed delays, Int. J. Biomath., 2014, 7, Article ID 1450055.

Elaiw A., AlShamrani N., Global properties of nonlinear humoral immunity viral infection models, Int. J. Biomath., 2015, 8,
Article ID 1550058.

Elaiw A., Alshehaiween S., Hobiny A., Global properties of delay-distributed HIV dynamics model including impairment of
B-cell functions, Mathematics, 2019, 7, Article number: 837.

Elaiw A., Alshaikh M., Stability of discrete-time HIV dynamics models with three categories of infected CD4* T-cells, Adv.
Differ. Equ-Ny., 2019, Article number: 407.

Elaiw A., Raezah A., Stability of general virus dynamics models with both cellular and viral infections and delays, Math.
Method. Appl. Sci., 2017, 40, 5863-5880.

Hobiny A., Elaiw A., Almatrafi A., Stability of delayed pathogen dynamics models with latency and two routes of infection,
Adv. Differ. Equ-Ny., 2018, Article number: 276.

Elaiw A., Elnahary E., Raezah A., Effect of cellular reservoirs and delays on the global dynamics of HIV, Adv. Differ. Equ-Ny.,
2018, Article number: 85.

Elaiw A., AlAgha A., Global dynamics of reaction-diffusion oncolytic M1 virotherapy with immune response, Appl. Math.
Comput., 2019 (accepted).

Gao N., Song Y., Wang X., Liu )., Dynamics of a stochastic SIS epidemic model with nonlinear incidence rates, Adv. Differ.
Equ-Ny., 2019, Article number: 41.

Song Y., Miao A., Zhang T., Wang X., Liu J., Extinction and persistence of a stochastic SIRS epidemic model with saturated
incidence rate and transfer from infectious to susceptible, Adv. Differ. Equ-Ny., 2018, Article number: 293.

Wang Y., Cao )., Alofi A., AL-Mazrooei A., Elaiw A., Revisiting node-based SIR models in complex networks with degree
correlations, Physica A., 2015, 437, 75-88.

Hale J., Verduyn Lunel S., Introduction to functional differential equations, Springer Science & Business Media, 2013.



	1 Introduction
	2 Model with saturation
	2.1 Basic properties
	2.2 Global properties

	3 Model with general incidence rate
	3.1 Global stability of equilibria

	4 Numerical simulations

