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1 Introduction
1.1 Rota-Baxter (family) algebras

An associative algebra R together with a K-linear operator P : R — R is called a Rota-Baxter algebra of
weight A, if

P(x)P(y) = P(P(x)y) + P(xP(y)) + AP(xy), for x,y eR, 1)

where A is a fixed element in the basis ring k. When A = 0, the operator P is indeed an algebraic
abstraction of the usual integration operation in analysis [1]. The mathematician Glen E. Baxter first
studied the Rota-Baxter algebras [2] in 1960 in his probability study. Some combinatoric properties of
Rota-Baxter algebras were studied by Rota [3] and Cartier [4]. Free Rota-Baxter associative algebras were
constructed on both commutative and noncommutative cases by using different methods, which appeared
in [1,3-8]. A Rota-Baxter algebra naturally carries a dendriform or tridendriform algebra structure [9].
Nowadays, Rota-Baxter algebra has become a new branch with broad connections to other objects in
mathematics, such as pre-Lie algebras, pre-Poisson algebras [10,11], quantum field theory [12-14], Hopf
algebras [15,16], commutative algebras [17,18], Loday’s dendriform algebras [9,19], and Aguiar’s associative
analogue of the classical Yang-Baxter equation [20-22].

In 2007, K. Ebrahimi-Fard, J. Gracia-Bondia and F. Patras [23, Proposition 9.1] (see also [25, Theorem
3.7.2]) introduced the first example of Rota-Baxter family about algebraic aspects of renormalization in
quantum field theory, where a “Rota-Baxter family” appears: this terminology was suggested to the authors by
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Li Guo (see Footnote following Proposition 9.2 therein), who further discussed the underlying structure
under the name Rota-Baxter family algebra in [24]. Namely, let Q be a semigroup and A € k be given.
A Rota-Baxter family of weight A on an algebra R is a collection of k-linear operators (P,),cq on R such
that

Pya)Pg(b) = Pp(P(a)b + aPg(b) + Aab), for a,b e R and a,f € Q. 2

Then the pair (R, (B,)ycq) is called a Rota-Baxter family algebra of weight A. Rota-Baxter family algebra
arises naturally in renormalization of quantum field theory. It is worthwhile to study the algebraic
structure of Rota-Baxter family algebras. As the construction of free objects in a category is always
interesting and important, the author in [26] constructed, respectively, free commutative unitary Rota-
Baxter family algebras, and free noncommutative unitary Rota-Baxter family algebras by the method of
Grobner-Shirshov bases.

1.2 Algebraic structures on (typed decorated) rooted forests

Rooted trees/forests are a useful tool for studying many interesting algebraic structures. It appeared in
the work of Arthur Cayley [27] in the 1850s considered rooted trees as a representation of combinatorial
structures related to the free pre-Lie algebra. More than a century later, these structures formed the
foundation of John Butcher’s theory of B-series [28,29], which has become an indispensable tool in the
analysis of numerical integration. Many Hopf algebraic structures have been built up on top of rooted
forests, such as Connes-Kreimer Hopf algebra [15], Loday-Ronco [19], Grossman-Larson [30] and Foissy-
Holtkamp [31,32]. In particular, the famous Connes-Kreimer Hopf algebra was employed to deal with
renormalization in quantum field theory [13,14]. Pre-Lie structures on non-planar rooted trees lead to
Hopf algebras of combinatorial nature, which appeared in the works in [15,30,33]. Free pre-Lie
algebras can also be described as the space of non-planar rooted trees with product given by grafting
of trees [34].

The multi pre-Lie structures were first introduced in [35] (see Section 4 and Appendix A) in a more
general setting before [36] which considered only the non-deformed structures. A recent preprint [37]
used typed decorated rooted forests in numerical analysis for developing a general scheme for dispersive
partial differential equations (PDEs) which strengths the universal aspect of these structures. Typed
decorated rooted forests also appeared in a context of low-dimension topology [38] and in a context of
the description of combinatorial species [39].

1.3 Motivation and layout of the paper

Our motivations come from two points. The first point is that it is almost natural to construct free
nonunitary Rota-Baxter family algebras, parallel to the unitary case done in [26]. The second point is along
the line of typed decorated rooted forests. Recall that Guo [24] constructed free nonunitary Rota-Baxter
algebras in terms of leaf-spaced decorated planar rooted forests. In the present paper, combining typed
decorated and leaf-spaced decorated planar rooted forests, we construct free nonunitary Rota-Baxter
family algebras, as a generalization of the work in [24].

The following is the outline of the paper. In Section 2.1, we recall some basic concepts of planar
rooted forests used in this paper. Combining leaf decorated and typed decorated planar rooted
forests, we propose the concept of (parallelly) typed leaf-spaced decorated planar rooted forests in
Section 2.2. Based on this concept, we construct the free nonunitary Rota-Baxter family algebra on a
set in Section 2.3. As a corollary, the construction of free nonunitary Rota-Baxter algebra on a set is
obtained.
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2 Free nonunitary Rota-Baxter family algebras

In this section, we first propose the concept of parallelly typed leaf-spaced decorated planar rooted forests
and then use them to construct free nonunitary Rota-Baxter family algebras.

2.1 Planar rooted forests

In this subsection, let us recall some basic concepts of planar rooted forests. A rooted tree is a connected
and simply connected set of vertices and oriented edges such that there is precisely one distinguished
vertex, called the root, with no incoming edge. The only vertex of the tree ® is taken to be a leaf. If two
vertices of a rooted tree are connected by an edge, then the vertex on the side of the root is called the
parent and the vertex on the opposite side of the root is called a child.

A rooted tree is called planar rooted tree if it is endowed with an embedding in the plane. Here are
some examples.

AN YN

where the root in a planar rooted tree is at the top. A subforest of a planar rooted tree T is the forest
consisting of a set of vertices of T together with their descents and edges connecting all these vertices.

Let 7 be the set of planar rooted trees and ¥ := S(7) the free semigroup generated by 7 . Thus, an
element in S(7), called a planar rooted forest, is a noncommutative product of planar rooted trees in 7.
Here are some examples of planar rooted forests.

ooo,o/I\,Io .%‘,Ioo.
The following concepts are standard.

Definition 2.1.

(a) For a planar rooted tree T, the depth dep(T) of T is the maximal length of paths from the root to leaves
of the tree. The depth dep(F) of a forest F is the maximal depth of trees in F.

(b) For a planar rooted forest F = Ty... T, with T,..., T, € 7, define bre(F) := b to be the breadth of F.

For example,

dep[oI ] =1 and bre(oI ) —2.

In the noncommutative version of the well-known Connes-Kreimer Hopf algebra [31,32], there is a
linear grafting operation

B*:kF - k¥, T,..T,— B'(L...T,), 3

where B*(T ... T,) is obtained by adding a new root together with an edge from the new root to the root of
each of the planar rooted trees Ti,..., T,,. For example,

B*[.U - /ﬁ and B (e e e) = '/I\.

Notation: Throughout this paper, let k be a nonunitary commutative ring which will be the base ring of all modules, algebras,
as well as linear maps. Algebras are nonunitary associative algebras but not necessary commutative. For a set Y, we denote by
kY and S(Y) the free k-module with a basis Y and free semigroup on Y, respectively.
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2.2 Parallelly typed leaf-spaced decorated planar rooted forests

In this subsection, we first recall the concept of leaf-spaced decorated planar rooted forests [24] and then
generalize it to parallelly typed version with an eye toward constructing free nonunitary Rota-Baxter
family algebras.

Guo utilized leaf-spaced decorated rooted forests to construct free nonunitary Rota-Baxter algebras [24].

Definition 2.2. Let X be a set and T a planar rooted tree.

(a) The tree T is called leaf-decorated if its each leaf is decorated by an element of X.

(b) A subtree starting from a vertex v of T is the planar rooted tree consisting of v, as the root, together
with all descents of v and edges connecting all these vertices. If we write the subtree starting from v in
the form B*(T;...T,) with T,,..., T, being planar rooted trees, we call T; and T;,; adjacent branches of v,
wherel <i<n-1.

(c) A planar rooted tree is called leaf-spaced if it does not have a vertex with adjacent non-leaf branches.

(d) A leaf-spaced decorated planar rooted tree is a leaf-decorated planar rooted tree which is also leaf-
spaced.

Let us expose some examples for better understanding.

Example 2.3. The following are leaf-spaced planar rooted trees

ety
TrATA

are not leaf-spaced planar rooted trees, since two right most branches are not separated by a leaf branch.

while

Example 2.4. The leaf-decorated planar rooted tree

is not leaf-spaced since two right most branches, with leaves decorated by s and v, are not separated by
a leaf branch. While the leaf-decorated planar rooted tree

is leaf-spaced.

Remark 2.5. For a leaf-spaced planar rooted tree, it doesn’t have a vertex with adjacent non-leaf branches.
In the view point of rewriting system, it means that we rewrite the Rota-Baxter equation (1) from left to
right. So it is natural to use leaf-spaced planar rooted trees to construct free nonunitary Rota-Baxter
algebra in [25].
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Now we generalize Definition 2.2 to planar rooted forests.

Definition 2.6. Let X be a set and F = T;... T, a decorated planar rooted forest, where T,,..., T, are decorated
planar rooted trees. We call F leaf-spaced if T,..., T,, are leaf-spaced and for each i, at least one of dep(T;)
and dep(T,,) is O.

Example 2.7. The following are some examples of leaf-spaced decorated planar rooted forests:

. I 7 w/\u . {\y ’ m . m . m |
v ) v q S u v
T Y E

while the following are some counterexamples:

Y

Here decorations are from X.

Typed decorated planar rooted trees are planar rooted trees with vertices decorated by elements of
a set X and edges decorated by elements of a set Q, which are applied to give a systematic description of
a canonical renormalization procedure of stochastic PDEs [40]. Several algebraic structures have been
built up on these planar rooted trees [36].

For a rooted tree T, denote by V(T) (resp. E(T)) the set of its vertices (resp. edges).

Definition 2.8. [40] Let X and Q be two sets. An X-decorated Q-typed (abbreviated typed decorated)
rooted tree is a triple T = (T, dec, type), where

(a) T is a rooted tree,

(b) dec:V(T) — X is a map,

(c) type: E(T) — Q is a map.

Here are some examples of typed decorated rooted trees.

€Z [ /B [0} /H

where x,y,z,u,ve X and a, B,y € Q.
Combining Definitions 2.2 and 2.8, we propose the following concept. For a planar rooted tree T,
denote by L(T) the set of its leaves.

Definition 2.9. Let X and Q be two sets. A typed leaf-spaced decorated planar rooted tree (resp. forest)
is a triple T = (T, dec, type), where

(a) T is a leaf-spaced planar rooted tree (resp. forest),

(b) dec:L(T) —» X is a map,

(c) type: E(T) — Q is a map.

Example 2.10. Let X and Q be two sets. For x,y € X and a, 8,y € Q,

« «
I, 2T oA
T
. ) vy Y .
w7"L : 2 s B ) ¥ 5
Y xT

are typed leaf-spaced decorated planar rooted trees.
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Now we come to the key concept used in this paper.

Definition 2.11. Let X and Q be two sets. A typed leaf-spaced decorated planar rooted tree (resp. forest) is
called parallelly typed if type(e;) = type(e;) whenever edges e; and e, share the same parent vertex.
Denote by To(X, Q) (resp. F¢(X, Q)) the set of parallelly typed leaf-spaced decorated planar rooted trees
(resp. forests).

Example 2.12. The following are some elements in F(X, Q):
a « (07 (&% « «
o (0%

while

T

« (%
« < o N W
. and g Y e,
s t s t
xr

with a + B are two counterexamples not in F(X, Q). The first one is because it is not a leaf-spaced
decorated planar rooted forest. The second one is because the right most two edges don’t have the same
edge decoration. Here x, y, z, s, t,u,v € X and a, §§ € Q.

Remark 2.13. Typed decorated planar rooted forests are allowed different decorations for edges sharing
the same parent and are used to construct free Rota-Baxter family algebras [41] and free (tri)dendriform
family algebras [42].

The classical grafting operation in Eq. (3) can be adapted to a linear operator B}, for each w € Q:
B} i KF(X, Q) - kKF(X,Q), T...T,— Bi(T...T), (4)

where B)(T ... T,) is the parallelly typed leaf-spaced decorated planar rooted tree obtained from B*(T;... T,)
by decorating all the edges connecting the new root by w. For example,

w w

B:)_(.:E.y) = :/\“; and B:;( la .yj = Y.
x

Then kFy(X, Q) is closed under the operators B;, with w € Q.

2.3 Free nonunitary Rota-Baxter family algebras

This subsection is devoted to construct free nonunitary Rota-Baxter family algebras in terms of parallelly
typed leaf-spaced decorated planar rooted forests.

Now we are going to equip k¥,(X, Q) with a free nonunitary Rota-Baxter family algebra structure. Let
us first define a multiplication

o : KF(X, Q) ® KF(X, Q) — kF(X, Q).

Definition 2.14. Let X be a set and Q a semigroup. Let F, F' € (X, Q).
(a) If bre(F) = 1 = bre(F’), then define

©)

Fo B! FF'(concatenation of planar rooted trees), if F =, or F' = e;
T\ Big(ForF') + Biy(FoiF") + ABjg(FoiF"), i F = BX(F), F' = By(F").
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(b) In general, if bre(F) = b and bre(F') = b’, write
F=T..T, and F' =T{... T},
and define
FouF' = T... Ty (Tyoe T) T ... Ty (6)

Let us give an example.

Example 2.15.

= BIB['QJ Op ;B ) + Biﬁ( la ¢ ‘yj + )\BIB(.w 34 .ll) (by Eq. (5))

- B;B[.x lﬁ j+ B;ﬁ[ l“ .yj + AB;ﬁ(.z.y) (by Eq. (5))

af/NapB af/\ap 5 8
« «
- =z 8 + a ¥+ ’ - (by Eq. (4))
7 )

x

The concept of the free nonunitary Rota-Baxter family algebra is given as usual.

Definition 2.16. Let X be a set and let Q be a semigroup. Let A € k be given. A free nonunitary Rota-
Baxter family algebra of weight A on X is a nonunitary Rota-Baxter family algebra Frgr(X) of weight A
together with a set map ix : X — Fggp(X) that satisfies the following universal property: for any nonunitary
Rota-Baxter family algebra (R, ¢, (By)wecq) Oof weight A and any set map f: X — R, there is a unique Rota-

Baxter family algebra morphism f : Free(X) — R such that f = f o ix.

We are ready for our main result. Let us define the set map ix by:

iX:X_>7:€(X9Q)1 X = 0.

Theorem 2.17. Let X be a set and Q a semigroup. The triple (kFo(X, Q), o, (B))weq), together with iy, is
the free nonunitary Rota-Baxter family algebra on X.

Proof. We divide the proof into two steps.

Step 1: We prove that (KFy(X, Q), ¢, (B})weca) is @ Rota-Baxter family algebra. From Eq. (5), we obtain
immediately (B})y<q is @ Rota-Baxter family of weight A. It remains to prove that o, satisfies the associativity:

(FrogR)og 5 = FroyFo0 ), for F, B, 5 € Fi(X, Q).

We use induction on dep(F;) + dep(F,) + dep(F;) > 0. For the initial step of dep(F;) + dep(F,) + dep(F3) = O,
we have dep(F;) = dep(F,) = dep(F3) = 0. Let

Fio= o, %, O

F = o, %,... %, and

F3 = &, %, ... %, With x;,, € X for 1<i<3.
Then by Eq. (6), we have

= (o, @ . o o . o o °
(Fl <>@FZ) 0€F3 ( X1 X1,2 ttt Xim g X1 X202 tt* xz,n2)°€ X310 X3,2 *** Xang
= o o . o o . o o °
X,1 X2ttt Xunp X210 X220t Xonmp X310 X322ttt X3n3
= o o . o o ° o o .
Xi,1 X2 X og( %01 %22 ot o Ot Oxsn X3,n3)

Fiog(Fy00F3).
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For the inductive step of dep(F,) + dep(F,) + dep(F;) > 1, we have dep(F) > 1 for some i = 1, 2, 3 and we
use induction on bre(F;) + bre(F,) + bre(F3) > 3. For the initial step of bre(F;) + bre(F,) + bre(F;) = 3, we
have bre(F)) = bre(F,) = bre(F;)=1. There are three cases to consider.

Case 1: F;, F, and F; are of depth greater than zero. Write F, = B (F), F, = Bﬁ (F,) and F; = +(F3) Then
(FrogFy)ooF3 = (By(Fy)oBg(F)) By (F3)
= (B ﬁ(B+(F1)‘>€F2) + +/3(F1<>eB/§r(Fz)) +AB;/3(F1<>2F2))<>€B+(F3)
= Bug(By(F1)oeFy) oBy (F3) + Bag(FioBj(Fy)) 0By (F3)+ ABgg(Fy 0¢F5) 0By (F3)
= y( /3(3+(F1)<>2F2)<>2F3) + ﬁy((B+(F1)°€F2)°€B+(F3)) + +/3y((BJ(F1)<>eF2)°zF3)
Big,(Bag(Fyo¢Bj (F2) ) ¢ F3) + Bag, ((FroeBj(Fy)) 0By (F3)) + ABgg, (Fyo¢Bg(F2)) o¢F3)
aﬁy( (F1<>eF2)<>eF3) + ﬁy((F1°€F2)°€B+(F3)) +A°B /;y((F1°zF2)°eF3)
= aﬁy( 3By (F1) 0¢F>) 00F3) + By, (B (F1) o¢F2) 9By (F3)) + AByg, ((By (F) o¢F2) o F3)
y(B /3(F1<>eBﬁ (Fy)) oeF3) + B;/;y(FNeBEy(BE (Fy)o(F3)) + B;ﬁy(FWeBﬁy(FzOeB; (F)))
+ ABaﬁy(F1<>epr(F2<>eF3)) + ABgg, ((Fio¢Bf(F,) ) oeF3) + AByg, (Byg(Fy0Fy) oo F3)
+ ABaﬁy((Flo(’,FZ)o(’,BJr(FB)) + A°B ﬁy((F1°€F2)°€F3)
(by the induction on dep(F;) + dep(F,) + dep(F3) and Eq. (5)).
By a similar calculation, we have
Fof(Fyo0F5) = By (F)oy(BE(Fy) 0By (F5))
5y (Ba B(B+(F1)°eF2)°eF3) + ;ﬁy(B;ﬁ(FloﬂBg(FZ))°€F3) + AB;ﬁy(B;p(F1°eF2)°eF3)
+ By, (Fi 00 Bf (Bj (Fy) o0 F3)) + AByg, (Fyoo(Bf (F) 0¢F5)) + By, (By (Fy) oo(Fy 00 By (F5)))
By, (FyoeBjy(FyoeBy (Fs))) + ABigy(Fio(Froe By (F5))) + ABjp, (B (F) ool FroeFs))
+ AB, (Fy 00 Bf (Fy00F3) ) + AByg (Fioq(Fy 00 F3)).

The ith term in the expansion of (F; ¢, F>) ¢, F3 matches with the o(i)th term in the expansion of F;o,(F, o, F3).
Here o is a permutation of order 11:

i _(1 2 345

o(i) 169 24

Case 2: Exactly two of F;, F, and F; are of depth greater than zero. There are three subcases to consider.
Subcase 2.1: F;, = B;(F)), F, = Bj(F,) and F; = e,. Then

6 7 8910 11
7 10 53 8 11/

(FiogFy)o0Fs = (By(Fy)ooBj(Fy)) 0%

= (By(F)oBj(Fy))* (byEq. (5))
By (F)o(Bj(Fy) %) (by Eq. (6))
= B (F)o(Bj(Fy)oe%) (by Eq. (5))
= Frof(Fyoek3).

Subcase 2.2: F1 = B,;(Fi), Fz = & and F3 = BE(F3) Then

(FrogFy)ooF3 = (By(Fy)op®)oeBg(F3)

(B (F1) %) oBj(F3)  (by Eq. (5))

B, (Fy)* B;(F5) (by Egs. (5) and (6))
B;(Fl)oe(‘xoeB/; (F3)) (by Egs. (5) and (6))

= Fog(Fy0pF3).

Subcase 2.3: F| = o, F, = B;(F,) and F; = Bj(F5). This case is similar to Subcase 2.1.
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Case 3: Exactly one of F, F, and F; is of depth greater than zero. We have three subcases to consider.
Subcase 3.1: F, = Bj(F)), F, = % and F; = ¢,. Then

(FroeF)) ooF3 (B(Fy) op®) o ®y

(Bj(Fy) %)%, (byEq. (5))

B,(F)* * (byEgs. (5) and (6))

B, (F1) (%) (by Egs. (5) and (6))

= Fog(F00F3).

Subcase 3.2: F; = ¢, F, = B)(F,) and F; = »,. Then

('xoﬁBut(FZ))oe.y

*B;(F)s, (byEgs. (5)and (6))

o o(Bj(F>)op®,) (by Egs. (5) and (6))
Fiog(Fy00F3).

(Fyopl)) opF3

Subcase 3.3: F; = ¢,, F, = ¢, and F; = B(F). This case is similar to Subcase 3.1.

For the inductive step of bre(F;) + bre(F;) + bre(F3) > 3, we have bre(F) > 2 for some i = 1, 2, 3. There
are three cases to consider.

Case 4: bre(F;) > 2. Let F =T, T15... T,5, with T 3,..., 1 5, € To(X, Q) and s; > 2. Then

(FroeFy)oeF3 = (T;;1 02 Ts) 0eF2) o F3
= (T,10,2.. Ts-1(Ty,s,00F2) ) o3 (by Eq. (6))
= TaTz .. Ts (T s, 00F2) 0 F3) - (by Eq. (6))
= T,102... s 1(T s 00(F2 00 F3))
(by the induction on bre(F)) + bre(F,) + bre(F3))
= (T,1Th2... [i,s) oe(Fy0eF3)  (by Eq. (6))
= Fog(Fy00F3).

Case 5: bre(F,) > 2. Let , = 51 5h5... s, with T y,..., Th5, € To(X, Q) and s, > 2. Then
(FroeFy)oeFs = (Fiogh1) Dy ... Thys,-1(Tys,00F3)  (by Eq. (6))
= Fioy(Fp00F3).

Case 6: bre(F3) > 2. This case is similar to Case 4.
Step 2: We show that (KF(X, Q), ¢, (B)wcq) satisfies the universal property. For this, let (R, ¢, (By)wcq)
be a nonunitary Rota-Baxter family algebra and let f: X — R be a set map.

(Existence) We define a linear map

f :kFX, Q) - R, F — f(F),

by induction on dep(F) > 0. Consider the initial step of dep(F) = 0. If bre(F) = 1, then F = ¢, for some
x € X and define

f(o) =f o ix(x) = f(x). ©)
If bre(F) > 2, then F = o, o,, ... ¢, for some x,...,x; € X, and we define
fF) = fOa)op---or f (xp). (8)

Assume that f(F) has been defined for F € (X, Q) with dep(F) < k for a k > 0 and consider F € F(X, Q)
with dep(F) = k + 1 > 1. If bre(F) = 1, we have F = B}\(F) for some w € Q and F € F(X, Q) with dep(F) = k.
We then define

FF) = f(BYF)) = R(f(E)). 9
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If bre(F) >1,let F=T,...T, with T,..., T}, € 7«(X, Q) and define
fF) = f(R)og---orf(Ty), (10)
where each f(T}), 1< i < b is defined by Eq. (7) or Eq. (9).
Now we prove that f is an algebra homomorphism:

f(FioeB) = f(R)orf(Fy) for F, F, € Fi(X, Q), (11)

by induction on the sum of depth dep(F)) + dep(F;) > 0. Write
FF=T,..Ts and F,=T... ;.

If dep(F;) + dep(F,) = 0, then

Fi=e, ...0, and F =9, .. 9,

and so

Floe Fz = .Xl,l .Xl,s .Xz,1 .Xz,t'
It follows from Eq. (8) that

fFioeF) = f(®, ... %, %o, *.)
fOa,1)or -~ orf (xa,5) orf (%,1) or *+- orf (%2,0)
(fOa,1)0r - orf (xa,5)) or(f (X2,1) o+ orf (X2, 1))
= f(F)orf (Fy).
For the inductive step, assume that Eq. (11) holds when dep(F;) + dep(F,) < k for a given k > 0 and consider
the case of dep(F;) + dep(F,) = k + 1. We reduce to the induction on bre(F;) + bre(F,) > 2. For the initial step
of bre(F;) + bre(F,) = 2, we have bre(F) = 1 = bre(F,) and F, = B;(F), F, = B{(F).
f-(F1<>zF2) = f(B;(Fl)OeB/J;r(Fz))
= f(Bi(B;(F)oeFy) + Byg(FyoeBi(Fy)) + ABys(FiooFy))  (by Eq. (5))
f BBy (F) o)) + f (Byg(FroeBE(F2))) + f (AByg(Fio0Fy))
Pa/i(f(BaJr(Fl)WFZ)) + Bxﬁ(f(FﬁeB/}r(Fz))) + /\Pa/}(f(FloeFZ)) (by Eq. (9))
Pyp(f (By(F))) orf (F)) + Bap(f (Fy) orf (B§(F2))) + ARug(f (Fy) orf (Fy))
(by the induction on dep(F,) + dep(F3))
Pyp(Pu(f (1)) orf (F2)) + Pap(f (F)orPo(f (F2))) + ARap(f (F) of (F))  (by Eq. (9))
= R(f(F))orPs(f(F)) (by Eq. (2))
f (B (F)orf (B(Fy))  (by Eq. (9))
= f(R)orf (F).

For the induction step of bre(F)) + bre(F,) > 3, we write

F1 = Ti,1... Tl,S and F2 = T2y1... TZ,[’-
Then

f(Floer) = f((Tl,l--- h,5)o(Ty1--- Tyt))
= f(Bi... T s(Bsoe ) Ba... By)  (by Eq. (6))
= f(B)or-orf (Tis-1)orf (T, s0eTo,1) orf (Tb2) or -+ of (Tr)  (by Eq. (10))
= f(T)or-+orf (Ti,s-1) orf (Ti,5) orf (B, 1) orf (T,2) ok -+ orf (Toc)
(by the induction hypothesis on bre(F;) + bre(F))
= f(Ti... L) orf (Bi...f(T))  (by Eq. (10))
= f(F)of (F).
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Thus, f is an algebra homomorphism. Further by Eq. (9),
foBi=P,of for weQ,

whence f is a Rota-Baxter family algebra morphism. Finally, it follows from Eq. (7) that f o ix = f. This
completes the proof of existence.

(Uniqueness) Suppose that such f exists. Then, since f is a Rota-Baxter family algebra morphism such
that f o iy = f, f(F) must be of the forms in Egs. (7)-(10) for F € Fi(X, Q). O

If Q is a trivial semigroup, that is, Q has only one element, then all edges of an element F in 7,(X, Q)
are of the same decoration. So we can view F has no edge decoration. In this case, denote F(X) = Fo(X, Q)
and notice that Rota-Baxter family Eq. (2) reduces to Rota-Baxter Eq. (1).

Corollary 2.18. Let X be a set. Then the triple (k¥y(X), o, B*), together with the ix, is the free nonunitary
Rota-Baxter algebra of weight A on X.

Proof. It follows from Theorem 2.17 by taking Q to be a trivial semigroup. O
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