Research Article

Penghui Lv*, Guoguang Lin, and Yuting Sun

The family of random attractors for nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients

https://doi.org/10.1515/math-2022-0003
received June 20, 2021; accepted July 19, 2021

Abstract: In this paper, the stochastic asymptotic behavior of the nonautonomous stochastic higher-order Kirchhoff equation with variable coefficients is studied. By using the Galerkin method, the solution of this kind of equation is obtained, and stochastic dynamical system under this kind of equation is obtained; by using the uniform estimation, the existence of the family of D_k-absorbing sets of the stochastic dynamical system Φ_k is obtained, and the asymptotic compactness of Φ_k is proved by the decomposition method. Finally, the D_k-stochastic attractor family of the stochastic dynamical system Φ_k in $V_{m,k}(\Omega) \times V_k(\Omega)$ is obtained.

Keywords: nonautonomous higher-order Kirchhoff equation, partial differential equations, variable coefficient, the family of random attractors, additive noise

MSC 2020: 37B55, 35B41, 35G31, 60H15

1 Introduction

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain with smooth boundary (i.e., the derivative of the function at the boundary exists and is continuous). In this paper, we study the asymptotic behavior of nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients on Ω:

$$
\begin{aligned}
&u_{tt} + a(x)(-\Delta)^m u_t + b(x)M(||\nabla^m u||)(-\Delta)^m u + g(x, u) = f(x, t) + h(x)\frac{\partial w}{\partial t}, \\
&u = 0, \quad \frac{\partial u}{\partial \nu} = 0, \quad i = 1, 2, \ldots, m - 1, \quad x \in \Gamma, \quad t \geq \tau, \\
&u(x, \tau) = u_\tau(x), \quad u_t(x, \tau) = u_{tt}(x), \quad x \in \Omega,
\end{aligned}
$$

(1.1)

where Γ is the smooth boundary of Ω, ν is the outer normal vector on the boundary Γ, $m > 1$, $a(x)$ and $b(x)$ are variable coefficient functions, $f(x, t) \in L^2_{loc}(\mathbb{R}, V_k(\Omega))$ is a time-dependent external force term, w is a one-dimensional bilateral standard Wiener process, $h(x)\frac{\partial w}{\partial t}$ describes white noise, and $g(x, u)$ is a nonlinear function that satisfies certain growth conditions and dissipation conditions.

* Corresponding author: Penghui Lv, Applied Technology College of Soochow University, Suzhou, Jiangsu, China, 215325; Lijiang Culture and Tourism College, Lijiang, Yunnan, China, 674199, e-mail: 18487279097@163.com
Guoguang Lin: School of Mathematics and Statistics, Yunnan University, Kunming, Yunnan, China, 650500, e-mail: gglin@ynu.edu.cn
Yuting Sun: Kunming Campus of Army Border and Coastal Defense College, Kunming, Yunnan, China, 650500

© 2022 Penghui Lv et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
The Kirchhoff model was proposed in 1883 to describe the motion of elastic cross-section. Compared with classical wave equations, the Kirchhoff model can describe the motion of elastic rod more accurately. There has been a lot of in-depth research on the Kirchhoff equations. [1–6] studied the long-term dynamics of the autonomous low-order Kirchhoff equation; [7–11] studied the existence of global solutions and the blow-up of solutions of the higher-order Kirchhoff equations.

Stochastic wave equations are a very important class of stochastic partial differential equations, which are widely used in many fields such as fluid mechanics, physics, electricity, etc. The random attractor is an important tool for studying the long-term asymptotic behavior of stochastic dynamical systems. Using it to characterize the long-term behavior of random dynamical systems has laid a solid foundation for the study of random dynamical systems. After more than 30 years of development, random dynamical systems have also been extensively studied. Many scholars have conducted in-depth studies on the dynamical behavior of random wave equations in unbounded domains [12–17] and bounded domains [18–20]. For new trends in functional analysis and random attractors, see also [21–24].

Regarding the variable coefficients in the equation, it represents the wave velocity at the space coordinate \(x \), which will appear in the wave phenomena in mathematical physics, marine acoustics, and other fields. It is of great practical significance to study the mathematical and physical equations with variable coefficients. In [25], they studied the global well-posedness and asymptotic behavior of solutions of Kirchhoff-type equations with variable coefficients and weak damping in unbounded domains. More relevant results can also be found in [26–33].

In recent years, Lin and Chen [34], Lin and Jin [35] have performed a detailed study on the long-term dynamical behavior of higher-order wave equations and proposed the concept of the family of attractors. Combined with the current research results, there are no relevant research results on the long-time dynamics of the nonautonomous stochastic higher-order Kirchhoff equation, and the asymptotic behavior of the higher-order Kirchhoff equation with variable coefficients has not been studied. By studying the nonautonomous stochastic higher-order Kirchhoff model with variable coefficients, the relevant results of the Kirchhoff model can be generalized, and the theoretical achievements of the Kirchhoff model can be enriched, which lays a theoretical foundation for later application. Therefore, this article will specifically study the family of random attractors of nonautonomous random higher-order Kirchhoff equation with variable coefficients. In the research process, the reasonable assumption and Leibniz formula are used to overcome how to define the \(L^p \)-weighted space and the difficulty of estimating the absorption sets and asymptotic compactness caused by the variable coefficients.

Section 2 of this article introduces related theories, related definitions, and theories of stochastic dynamical systems; Section 3 presents the family of the continuous cocycle of the problem; In Section 4, the uniform estimation of the solution of problem (1.1) is obtained, and the asymptotic compactness of \(\Phi_\varepsilon \) is obtained through the decomposition method; in Section 5, we get the family of \(D_d \)-random attractors of \(\Phi_\varepsilon \) in \(X_d \).

2 Preparatory knowledge

In this section, we mainly give the related theories of nonautonomous stochastic dynamical systems and random attractor (the family of random attractors).

First, the relevant notation needed in this paper is introduced: Define the inner product and norm on \(H = L^2(\Omega) \) as \((\cdot, \cdot) \) and \(\| \cdot \| \), \(L^p = L^p(\Omega) \), \(\| \cdot \|_p = \| \cdot \|_{L^p} \), where \(p \geq 1 \). Set variable coefficient \(a(x), b(x) = b_0 a(x), b_0 \) as a positive constant, satisfying \(a \in C_0^\infty(\Omega), a(x) \geq a_0 > 0, \frac{\partial a}{\partial x} \big|_{\Gamma} = 0, a_0 = \| a(x) \|_{\text{ess}}, a(x)^{-1} = \mu(x), x \in \Omega, \) and \(\mu \in L^\infty(\Omega) \cap C_0^\infty(\Omega) \).

By \(D^{1,2} \), we define the closure of the \(C_0^\infty(\Omega) \) functions with respect to the "energy norm" \(\| u \|_{D^{1,2}} = \int_\Omega |\nabla u|^2 \, dx \). It is well known that

\[
D^{1,2} = \{ u \in L^2(\Omega) \mid \nabla u \in (L^2(\Omega))^N \},
\]

and for \(D^{1,2} \hookrightarrow L^{2N/(N-2)}(\Omega) \), there exists \(\beta > 0 \) such that \(\| u \|_{2N/(N-2)} \leq \beta \| u \|_{D^{1,2}} \).
Lemma 2.1. [26] Suppose that $\mu \in L^p(\Omega) \cap C^0(\Omega)$, then for all $u \in C^0(\Omega)$, there exists $\alpha > 0$ such that

$$\alpha \int_{\Omega} \mu u^2 \, dx \leq \int_{\Omega} |\nabla u|^2 \, dx,$$

where $\alpha = \beta^{-2} \|\mu\|_{L^{1/2}}^{-1}$.

Let $\mu > 0$ be the weight function, and the weighted space $L^p_\mu = L^p(\Omega)$ with the following norm:

$$\|u\|_{L^p_\mu}^p = \int_{\Omega} \mu |u|^p \, dx = \|\mu^\sigma u\|_p^p,$$

for $1 \leq p < +\infty$. Clearly $L^2_\mu = L^2(\Omega)$ is a separable Hilbert space the inner product and norm are respectively:

$$(u, v)_\mu = \int_{\Omega} \mu uv \, dx = \left(\mu^\sigma u, \mu^\sigma v\right), \quad \|u\|_{L^2_\mu} = \|\mu^\sigma u\|.$$

For $p : 1 \leq p < \infty$, the Banach space L^p_μ is uniformly convex, reflexive space, and $(L^p_\mu)' = L^{p'}_\mu$, where p' is the conjugate number of p.

Lemma 2.2. [26] Suppose that $\mu \in L^2(\Omega) \cap C^0(\Omega)$, then $D^{1,2}$ is compactly embedded in L^2_μ. Let

$$V_m = H^m(\Omega) = H^m(\Omega) \cap H^k(\Omega), \quad V_{m+k} = H_0^{m+k}(\Omega) = H_0^{m+k}(\Omega) \cap H^k(\Omega), \quad k = 0, 1, \ldots, m,$$

and the corresponding inner product and norm are, respectively,

$$(u, v)_{V_m} = \left(\nabla^{m+k} u, \nabla^{m+k} v\right), \quad \|u\|_{V_m} = \|\nabla^{m+k} u\|_H.$$

At the same time, a general form of Poincare inequality: $\lambda_1 \|\nabla^\sigma u\| \leq \|\nabla^{\sigma+1} u\|$, where λ_1 is the first eigenvalue of $-\Delta$. In the text, C_1 is a positive constant, $C(\cdot)$ represents a positive constant that depends on the parameters in parentheses, and C_m^σ is the corresponding number of combinations.

Assuming that $(X, \|\cdot\|_X)$ is a separable Hilbert space, and $B(X)$ is the Borel σ-algebra of $X(\Omega, \mathcal{F}, P)$ is the metric probability space.

Definition 2.3. [12] Let $\theta : R \times \Omega \to \Omega$ be a family of $(B(X) \times \mathcal{F}, \mathcal{F})$-measurable mappings such that $\theta_0(\cdot)$ is the identity on Ω for all $s \in R$, $\theta_s(\cdot) = \theta_s(\cdot) \circ \theta_0(\cdot), PB(\cdot) = P$. A mapping $\Phi : R \times R \times \Omega \times X \to X$ is called a continuous cocycle or continuous random dynamical system (RDS) on X over R and (Ω, \mathcal{F}, P) if for all $\tau \in R, w \in \Omega, s \in R$ the following conditions are satisfied:

i: $\Phi(\cdot, \tau, \cdot, \cdot) : R^2 \times \Omega \times X \to X$ is a $(B(R^2) \times \mathcal{F} \times B(X), B(X))$-measurable mapping;

ii: $\Phi(0, \tau, w, \cdot) = \Phi(0, \tau, w, \cdot)$ is the identity on X;

iii: $\Phi(t + s, \tau, w, \cdot) = \Phi(t, \tau + s, \theta_s w, \Phi(s, \tau, w, \cdot))$;

iv: $\Phi(t, \tau, w, \cdot) : \Omega \to X$ is continuous.

Let $D = \{D(\tau, w) \subseteq X : \tau \in R, w \in \Omega\}$ be a family of subsets parameterized by $(\tau, w) \in R \times \Omega$ in X.

Definition 2.4. [13] The family $D = \{D(\tau, w) \subseteq X : \tau \in R, w \in \Omega\}$ satisfies:

1. for all $(\tau, w) \in R \times \Omega$, $D(\tau, w)$ is a closed nonempty subset of X;

2. for every fixed $x \in X$ and any $\tau \in R$, the mapping $w \in \Omega \to \theta_w(x, B(\tau, w))$ is $(\mathcal{F}, B(R^*))$ measurable, then the family D is measurable with to \mathcal{F} in Ω.

Definition 2.5. [15] For all $\sigma > 0, w \in \Omega$, $D = \{D(t, w) \subseteq X : \tau \in R, w \in \Omega\}$ satisfies:

$$\lim_{t \to -\infty} e^\sigma \|D(\tau + t, \theta_tw)\|_X = 0,$$

then $D = \{D(\tau, w) \subseteq X : \tau \in R, w \in \Omega\}$ is called tempered.
Let \(\mathcal{D} = \mathcal{D}(X) \) be the set of all random tempered sets in \(X \).

Definition 2.6. [12] A family \(K = \{K(\tau, w) \subseteq X : \tau \in R, w \in \Omega_i\} \in \mathcal{D} \) of nonempty subsets of \(X \) is called a measurable \(\mathcal{D} \)-pullback attracting(or absorbing) set for \(\{\Phi(t, \tau, w)\}_{t \geq 0, \tau \in R, w \in \Omega_i} \) if

1. \(K \) is measurable with respect to the \(P \) completion of \(\mathcal{F} \) in \(\Omega_i \);
2. for all \(\tau \in R, w \in \Omega_i \) and for every \(D \in \mathcal{D} \), there exists \(T(D, \tau, w) > 0 \) such that

\[
\Phi(t, \tau - t, \theta_t w, D(\tau - t, \theta_t w)) \subseteq K(\tau, w), \quad \forall t \geq T(D, \tau, w).
\]

Definition 2.7. [15] \(\Phi \) is said to be asymptotically compact in \(X \) if for \(\tau \in R, w \in \Omega_i, D = \{D(\tau, w) \subseteq \tau \in R, w \in \Omega_i, x_n \in B(\tau - t_n, \theta_{t_n} w) \mid \Phi(t_n, \tau - t_n, \theta_{t_n} w, x_n)\}_{n=1}^{\infty} \) has a convergent subsequence in \(X \) whenever \(t_n \to \infty \).

Definition 2.8. [13] A family \(A = \{A(\tau, w) \subseteq X : \tau \in R, w \in \Omega_i\} \in \mathcal{D} \) is called a \(\mathcal{D} \)-pullback random attractor for \(\{\Phi(t, \tau, w)\}_{t \geq 0, \tau \in R, w \in \Omega_i} \) if

1. \(A(\tau, w) \) is measurable in \(\Omega_i \) with respect to \(\mathcal{F} \) and compact in \(X \) for \(\forall \tau \in R, w \in \Omega_i \),
2. \(A \) is invariant, i.e., for \(\forall \tau \in R \) and \(w \in \Omega_i \), \(\forall t \geq 0 \),

\[
\Phi(t, \tau, w, A(\tau, w)) = A(t + \tau, \theta_t w);
\]
3. \(A \) attracts every member of \(\mathcal{D} \), i.e., for every \(D \in \mathcal{D}, \tau \in R \) and for every \(w \in \Omega_i \),

\[
\lim_{t \to +\infty} \text{dist}_H(\Phi(t, \tau - t, \theta_{t} w, D(\tau - t, \theta_{t} w)), A(\tau, w)) = 0,
\]

where \(\text{dist}_H(P, Q) \) denotes the Hausdorff semi-distance between two subsets \(P \) and \(Q \) of \(X \).

If we change \(\mathcal{D} = \mathcal{D}(X) \) to \(\mathcal{D}_k = \mathcal{D}_k(X_0) \), where \(k = 0, 1, \ldots, m \), then \(A \) in Definition 2.8 can be a family of random attractors \(\{A_k\} \).

Lemma 2.9. [12] Let \(\mathcal{D} \) be a neighborhood-closed collection of \((\tau, w) \)-parametrized families of nonempty subsets of \(X \) and \(\Phi \) be a continuous cocycle on \(X \) over \(R \) and \((\Omega_i, \mathcal{F}, P, \{\theta_{t} \mid t \in R\}) \), then \(\Phi \) has a pullback \(\mathcal{D} \)-attract \(A \) if and only if \(\Phi \) is pullback \(\mathcal{D} \) asymptotically compact in \(X \) and \(\Phi \) has a closed, \(\mathcal{F} \)-measurable pullback \(\mathcal{D} \)-absorbing set \(K \) in \(\mathcal{D} \) and the unique pullback \(\mathcal{D} \)-attractor \(A = \{A(\tau, w)\} \) is given by

\[
A(\tau, w) = \bigcap_{t \geq 0, \tau \in R} \Phi(t, \tau - t, \theta_{t} w, K(\tau - t, \theta_{t} w)), \quad \tau \in R, \quad w \in \Omega_i.
\]

Similarly, Lemma 2.9 can be extended to Lemma 2.10 of the family of pullback attractors.

Lemma 2.10. Let \(\mathcal{D}_k \) be neighborhood-closed collections of \((\tau, w) \)-parametrized families of nonempty subsets of \(X_k \), \(k = 1, 2, \ldots, m \), and \(\Phi_k \) be the family of continuous cocycles on \(X_k \), \(k = 1, 2, \ldots, m \) over \((\Omega_i, \mathcal{F}, P, \{\theta_{t} \mid t \in R\}) \), then \(\Phi_k \) has the family of pullback \(\mathcal{D}_k \)-attract \(\{A_k\} \) if and only if \(\Phi_k \) is pullback \(\mathcal{D}_k \)-asymptotically compact in \(X_k \) and \(\mathcal{D}_k \) has closed, \(\mathcal{F} \)-measurable pullback \(\mathcal{D}_k \)-absorbing sets \(K_k \) in \(\mathcal{D}_k \) and the unique pullback \(\mathcal{D}_k \)-attractor \(A_k = \{A_k(\tau, w)\} \) is given by

\[
A_k(\tau, w) = \bigcap_{t \geq 0, \tau \in R} \Phi_k(t, \tau - t, \theta_{t} w, K_k(\tau - t, \theta_{t} w)), \quad \tau \in R, \quad w \in \Omega_i.
\]

3 The family of cocycles of nonautonomous stochastic higher-order Kirchhoff equations with variable coefficients

Let \((\Omega_i, \mathcal{F}, P) \) be a probability space, where

\[
\Omega_i = \{w \in C(R, R), w(0) = 0\}.
\]
w is a two-sided real-valued Winner processes on the probability space \((\Omega, \mathcal{F}, P)\). Define \(\theta(w(t)) = w(-t) - w(t), w \in \Omega_1, t \in R, \) thus, \((\Omega_1, \mathcal{F}, P, (\theta_{t}, t \geq 0))\) is an ergodic metric dynamical system.

For a small positive number \(\varepsilon\), let \(z\) be a new variable given by \(z = u + \varepsilon u\) and then, system (1.1) becomes

\[
\begin{aligned}
\frac{\partial u}{\partial t} + \varepsilon u &= z; \\
\frac{\partial z}{\partial t} &= \varepsilon z - a(x)(-\Delta)^m z + \varepsilon a(x)(-\Delta)^m u - \varepsilon^2 u - b(x)M(||\nabla u||^2)(-\Delta)^m u - g(x, u) + f(x, t) + h(x)\frac{dw}{dt};
\end{aligned}
\]

(3.1)

where \((M)M \in C^\ell(R^\ell), M^\ell \geq 0,\) and \(M(s) \leq M_0 \cdot (1 + s^q), 0 < q < 1/2, M_0 = M(0)\) is a positive constant \(\forall s \in R^\ell, h(x) \in V_{m+1}(\Omega), x \in \Omega, t \geq \tau, t \in R, k = 0, 1, \ldots, m, f(x, t) \in L^\infty_{loc}(R, V_\ell(\Omega))\). In order to get the conclusion of this article, suppose that the nonlinear term \(g(x, u)\) satisfies the following conditions: for \(\forall u \in R, x \in \Omega,\) there are positive constants \(c_1, c_2, c_3, c_4, c_5 > 0,\) satisfying

\[
|g(x, u)| \leq c_1|v|^p + \phi_1(x), \quad \phi_1 \in L^p(\Omega),
\]

(3.2)

\[
ug(x, u) - c_2G(x, u) \geq \phi_2(x), \quad \phi_2 \in L^p(\Omega),
\]

(3.3)

\[
G(x, u) \geq c_3|u|^{p+1} - \phi_3(x), \quad \phi_3 \in L^p(\Omega),
\]

(3.4)

\[
|g(x, u)| \leq c_4|u|^{p+1} + \phi_4(x), \quad \phi_4 \in V_\ell(\Omega),
\]

(3.5)

\[
|\nabla^2 g(x, u)| \leq c_5|u|^p + \phi_5(x), \quad \phi_5 \in V_\ell(\Omega),
\]

(3.6)

where \(1 \leq p < +\infty,\) for \(N = 1, 2; 1 \leq p < \frac{N}{N-2}, N = 3, 4;\) and \(G(x, u) = \int_0^u g(x, s)ds.\) From equations (3.2) and (3.3), we can get

\[
G(x, u) \leq c_1(|u|^2 + |u|^{p+1} + \phi_1^2 + \phi_2).
\]

(3.7)

To show that problem (3.1) generates a random dynamical system, we let \(v(t, \tau, w) = z(t, \tau, w) - hw(t),\) and then, (3.1) can be rewritten as the equivalent system with random coefficients but without white noise:

\[
\begin{aligned}
\frac{\partial u}{\partial t} - v + \varepsilon u &= hw(t); \\
\frac{\partial v}{\partial t} &= ev - a(x)(-\Delta)^m v + \varepsilon a(x)(-\Delta)^m u - \varepsilon^2 u - b(x)M(||\nabla u||^2)(-\Delta)^m u \\
&- g(x, u) + f(x, t) + \varepsilon h(x)w(t) - a(x)(-\Delta)^m h(x)w(t); \\
u &= 0, \quad \frac{\partial u}{\partial t} = 0, \quad i = 1, 2, \ldots, m - 1, \quad x \in \Gamma, t \geq \tau; \\
v(x, \tau) = u_\tau(x), \quad v(x, \tau) = v_\tau(x) = z_\tau(x) - hw(\tau), \quad x \in \Omega.
\end{aligned}
\]

(3.8)

Let \(X_k = V_{m+k} \times V_k, k = 0, 1, \ldots, m,\) when \(k = 0 \ v_0 = L^2_{x\varepsilon},\) endowed with the usual norm \(||(u, v)||^2_{X_k} = ||u||^2_{V_{m+k}} + ||v||^2_{V_k}.\) By the standard Galerkin method: If the assumptions \((M)\ h(x) \in V_{m+k}(\Omega), x \in \Omega, t \geq \tau, t \in R, f(x, t) \in L^\infty_{loc}(R, V_\ell(\Omega))\) conditions (3.2)–(3.6) hold the problem (3.8) is well posed in \(X_k = V_{m+k} \times V_k,\) i.e., for all \(t \in R\) and \(P = a,\) e. w. \(x \in \Omega, (u_\tau, v_\tau) \in X_k,\) the problem (3.8) has a unique global solution \((u(t, t, w, u_\tau), v(t, t, w, v_\tau)) = (u_\tau, v_\tau).\) Moreover, for \(t \geq \tau, (u(t, t, w, u_\tau), v(t, t, w, v_\tau)) = (u_\tau, v_\tau))\) is \((\mathcal{F}, B(X_k))\) measurable in \(w\) and continuous in \((u_\tau, v_\tau)\) with respect to the \(X_k\) norm. Thus, the solution mapping can be used to define a family of continuous cocycles for (3.8). Let \(\Phi_k : R^\ell \times R \times \Omega_1 \times X_k \rightarrow X_k\) be mappings given by

\[
\Phi_k(t, \tau, w, (u_\tau, w_\tau)) = (u(t + \tau, \tau, \theta_\tau w, u_\tau), v(t + \tau, \tau, \theta_\tau w, v_\tau)),
\]

(3.9)
where \((t, \tau, w, (u_t, v_t)) \in \mathbb{R}^+ \times \mathbb{R} \times \Omega \times X_k\), then \(\Phi_k\) is a family of continuous cocycles over \((R, \tau + t)\) and \((\Omega, \mathcal{F}, P, \{\theta_t\}_{t \in R})\) on \(X_k\). For \(P - \text{a.e. } w \in \Omega\) and \(t, s \geq 0, \tau \in R: \)

\[
\Phi_k(t + s, \tau, w, (u_t, v_t)) = \Phi_k(t, s + \tau, w, \Phi_k(s, \tau, w, (u_t, v_t))).
\]

(3.10)

For any bounded nonempty subset \(B_k\) of \(X_k\) denote by \(\|B_k\| = \sup_{\theta \in \mathcal{B}} \|\Phi_k\|_{X_k}\). Let \(D_k = \{D_k(\tau, w) : \tau \in R, w \in \Omega\}\) be a family of bounded nonempty subsets of \(X_k\), and for all \(\tau \in R, w \in \Omega\),

\[
\lim_{s \to -\infty} e^{\alpha_s\tau}D_k(t + s, \theta, w))\|_{X_k}^2 = 0.
\]

(3.11)

Remember that \(D_k\) is the set of the aforementioned subset family \(D_k\), that is, \(D_k = \{D_k(\tau, w) : \tau \in R, w \in \Omega\}\) : \(D_k\) satisfies (3.11).

4 Uniform estimates of solutions

To prove the existence of the family of random attractors, we conduct uniform estimates on the solutions of the problem (3.8) defined on \(\Omega\), for the purposes of showing the existence of a family of \(D_k\) pullback absorbing sets and the pullback \(D_k\) asymptotic compactness of the random dynamical system. Let \(\varepsilon > 0\) be small enough and satisfy \(\alpha \lambda^{m-1} - 3\varepsilon > 0, 2a_{00}\lambda^{m} - (a_{00}\lambda^{m} + 12)\varepsilon > 0, M_0 - \frac{\varepsilon}{2} > 0, h = \frac{M_0}{8} - \varepsilon > 0,\)

\[
\sigma = \frac{1}{2} \min \left\{ \alpha \lambda^{m-1} - 3\varepsilon, \frac{E_0}{2} \right\}, \quad \sigma_1 = \frac{1}{2} \min \{2a_{00}\lambda^{m} - (a_{00}\lambda^{m} + 12)\varepsilon, \varepsilon \}.
\]

(4.1)

To obtain uniform estimates of the solutions, \(f(x, t)\) needs to satisfy (\(F_1\)) \(\int_{-\infty}^{t} e^{\alpha_s}\|f(\cdot, s)\|_{U}^2\) ds < \(\infty\).

Lemma 4.1. Suppose \(M\) satisfies (\(M\)), \(h(x) \in V_{m}^1(\Omega)\), \(k = 0, 1, \ldots, m\), (3.2)-(3.6) hold, \(f(x, t)\) satisfies (\(F_1\)), and \(B_k = \{B_k(\tau, w) : \tau \in R, w \in \Omega\}\) \(\in D_k\) for \(P - \text{a.e. } w \in \Omega\), \(\tau \in R\) initial value satisfies \((u_{-t}, v_{-t}) \in B_k(\tau - t, \theta, w),\)

there exists \(T_k = T_k(\tau, w, B_k) > 0\) such that for all \(t \geq T_k\), the solution \((u(\tau, \tau, w, u_{-t}), v(\tau, \tau, w, v_{-t})) = (u_{-t}, \theta, w, v_{-t})\) of problem (3.8) satisfies

\[
\|v(\tau, \tau - t, \theta, w, v_{-t})\|_{X_k}^2 + \|u(\tau, \tau - t, \theta, w, v_{-t})\|_{U}^2 \leq r_k(\tau, w),
\]

where \(r_k(\tau, w)\) will be given in detail later.

Proof. Taking the inner product of (3.8) with \(v \in L_{U}^2(\Omega)\), we find that

\[
\frac{1}{2} \frac{d}{dt} \|v\|_{L_{U}^{2}}^2 = \varepsilon\|v\|_{L_{U}^{2}}^2 - \|\nabla v\|_{L_{U}^{2}}^2 + \varepsilon(-\Delta)^{m}u, v) - \varepsilon^{2}(u, v)_{L_{U}^{2}} - b_{0}(M(\|\nabla u\|_{L_{U}^{2}}^{2})(-\Delta)^{m}u, v)
\]

\[
- (g(x, u), v)_{L_{U}^{2}} + (f(x, t, v), v)_{L_{U}^{2}} + \varepsilon w(t)(h, v)_{L_{U}^{2}} - w(t)(-\Delta)^{m}h, v),
\]

(4.2)

for each term on the right-hand side of (4.2):

\[
\varepsilon(-\Delta)^{m}u, v) = \varepsilon(-\Delta)^{m}u, u_t + \varepsilon u + h w(t)) - \frac{\varepsilon}{2} \frac{d}{dt} \|\nabla u\|_{L_{U}^{2}}^2 + \varepsilon^{2}\|\nabla u\|_{L_{U}^{2}}^2 - \varepsilon w(t)(-\Delta)^{m}u, h),
\]

(4.3)

\[
\varepsilon^{2}(u, v)_{L_{U}^{2}} = \varepsilon^{2}(u, u_t + \varepsilon u - h w(t))_{L_{U}^{2}} = \frac{\varepsilon^{2}}{2} \frac{d}{dt} \|\nabla u\|_{L_{U}^{2}}^2 + \varepsilon^{2}\|\nabla u\|_{L_{U}^{2}}^2 - \varepsilon^{2} w(t)(u, h)_{L_{U}^{2}},
\]

(4.4)

\[
b_{0}(M(\|\nabla u\|_{L_{U}^{2}}^{2})(-\Delta)^{m}u, v) = b_{0}(M(\|\nabla u\|_{L_{U}^{2}}^{2})(-\Delta)^{m}u, u_t + \varepsilon u - h w(t))
\]

\[
= \frac{b_{0}}{2} \frac{d}{dt} \int_{0}^{t} M(s) ds + \varepsilon b_{0}(M(\|\nabla u\|_{L_{U}^{2}}^{2})\|\nabla u\|_{L_{U}^{2}}^{2} - b_{0}(M(\|\nabla u\|_{L_{U}^{2}}^{2})w(t)(-\Delta)^{m}u, h),
\]

(4.5)

\[
(g(x, u), v)_{L_{U}^{2}} = (g(x, u), u_t + \varepsilon u - h w(t))_{L_{U}^{2}} = \frac{d}{dt} \int_{\Omega} \mu g(x, u) dx + \varepsilon (g(x, u), u)_{L_{U}^{2}} - w(t)(g(x, u), h)_{L_{U}^{2}}.
\]

(4.6)
Substitute (4.3)–(4.6) into (4.2) to obtain
\[
\frac{d}{dt} \left(||v||_{L^p_t}^2 + b_0 \int_0^t M(s) ds - \varepsilon ||v||_{L^m_t}^2 + \varepsilon^2 ||u||_{L^p_t}^2 + 2 \int_{\Omega} \mu G(x, u) dx \right) + 2 ||v||_m^2 \\
- 2\varepsilon ||v||_{L^p_t}^2 - 2\varepsilon b_0 M(||v||_{L^m_t}^2)||v||_{L^m_t}^2 - 2\varepsilon^2 ||u||_{L^p_t}^2 + 2\varepsilon^2 ||u||_{L^p_t}^2 + 2\varepsilon (g(x, u), u)_{L^p_t} \\
= 2\varepsilon(f(x, t), v)_{L^p_t} + (2\varepsilon b_0 M(||v||_{L^m_t}^2) - 2\varepsilon) w(t) \langle (-\Delta)^m u, h \rangle - 2\varepsilon^2 w(t)(u, h)_{L^p_t} \\
+ 2w(t)(g(x, u), h)_{L^p_t} + 2w(t)(h, v)_{L^p_t} - 2w(t)(-\Delta)^m h, v \rangle.
\]

Using the Cauchy-Schwarz inequality, Young's inequality and Holder's inequality, we have
\[
2\varepsilon^2 w(t)(u, h)_{L^p_t} \leq \varepsilon ||u||_{L^p_t}^2 + \varepsilon |w(t)||h||_{L^p_t}^2, \tag{4.8}
\]
\[
2\varepsilon b_0 M(||v||_{L^m_t}^2) w(t)(-\Delta)^m u, h \rangle \\
\leq 2\varepsilon b_0 M_0 (1 + ||v||_{L^m_t}^{2\gamma}) w(t)||v||_{L^m_t}||v||_{L^m_t} \\
\leq 2\varepsilon b_0 M_0 w(t)||v||_{L^m_t}||v||_{L^m_t} + 2\varepsilon b_0 M_0 w(t)||v||_{L^p_t}^{2\gamma} ||v||_{L^m_t} \\
\leq \frac{\varepsilon b_0 M_0}{4} ||v||_{L^m_t}^2 + 4\varepsilon - b_0 M_0 w(t)||v||_{L^m_t}^2 + \frac{\varepsilon b_0 M_0}{4} ||v||_{L^m_t}^2, \tag{4.9}
\]
\[
+ \frac{1}{2} \frac{2\varepsilon b_0 M_0}{8q + 4} \left(\frac{\varepsilon}{q + q} \right)^{\frac{q + q}{q + q}} b_0 M_0 w(t)||v||_{L^m_t}^2.
\]

By (3.2) and (3.4), we get
\[
2w(t)(g(x, u), h)_{L^p_t} \leq 2\varepsilon |w(t)||\phi||_{L^p_t}||h||_{L^p_t} + 2\varepsilon |w(t)||\mu G(x, u) + \mu \phi_x||h||_{L^p_t} \\
\leq 2\varepsilon |w(t)||\phi||_{L^p_t}||h||_{L^p_t} + 2\varepsilon |w(t)||\mu G(x, u) + \mu \phi_x||h||_{L^p_t} \\
\leq 2\varepsilon |w(t)||\phi||_{L^p_t}||h||_{L^p_t} + \varepsilon \varepsilon \int \mu G(x, u) dx + \varepsilon \varepsilon \int \mu \phi_x dx \\
+ (2\varepsilon)\|\varepsilon\|^p \frac{(|w(t)||h||_{L^p_t}^p + 1}{p + 1} \right)^p \|w(t)||h||_{L^p_t}^{p+1}, \tag{4.10}
\]
\[
2(f(x, t), v)_{L^p_t} + 2(w(t)(h, v)_{L^p_t} - 2w(t)(-\Delta)^m h, v) \\
\leq 2\varepsilon^2 |f||_{L^p_t}||v||_{L^p_t} + 2\varepsilon |w(t)||h||_{L^p_t}||v||_{L^p_t} + 2\varepsilon |w(t)||v||_{L^m_t}||v||_{L^m_t} \\
\leq 2\varepsilon^2 \lambda_{1-m}^{-1} |f||_{L^p_t}||v||_{L^m_t} + 2\varepsilon |w(t)||h||_{L^p_t}||v||_{L^p_t} + 2\varepsilon |w(t)||v||_{L^m_t}||v||_{L^m_t} \\
\leq ||v||_{L^p_t}^2 + ||v||_{L^p_t}^2 + 2\varepsilon \lambda_{1-m}^{-1} |f||_{L^p_t}^2 + 2\varepsilon |w(t)||h||_{L^p_t}^2 + 2\varepsilon |w(t)||v||_{L^m_t}^2 + 2\varepsilon |w(t)||v||_{L^m_t}^2, \tag{4.11}
\]
\[
2w(t)((-\Delta)^m u, h) \leq 2\varepsilon |w(t)||v||_{L^m_t}||v||_{L^m_t} + |w(t)||v||_{L^m_t}^2. \tag{4.12}
\]

Substitute (4.8)–(4.12) into (4.7) to obtain
\[
\frac{d}{dt} \left(||v||_{L^p_t}^2 + b_0 \int_0^t M(s) ds - \varepsilon ||v||_{L^m_t}^2 + \varepsilon^2 ||u||_{L^p_t}^2 + 2 \int_{\Omega} \mu G(x, u) dx \right) + 2 ||v||_m^2 \\
- 2\varepsilon ||v||_{L^p_t}^2 - 2\varepsilon b_0 M(||v||_{L^m_t}^2)||v||_{L^m_t}^2 - 2\varepsilon^2 ||u||_{L^p_t}^2 + 2\varepsilon^2 ||u||_{L^p_t}^2 + 2\varepsilon (g(x, u), u)_{L^p_t} \\
+ 2\varepsilon^2 w(t)(u, h)_{L^p_t} + 2\varepsilon^2 w(t)(h, v)_{L^p_t} - 2\varepsilon^2 w(t)(-\Delta)^m h, v) \\
+ 2\varepsilon^2 w(t)(-\Delta)^m h, v). \tag{4.13}
\]
\[
\begin{align*}
&\leq 2\alpha^{-1}\lambda_1^{-m}\|f\|_{L^p_{\mu}}^2 + (3 + 4\varepsilon^{-1}M_0b_0)|w(t)|^2\|\nabla h\|^2 + 2\varepsilon|w(t)|^2\|h\|_{L^2_{\mu}}^2 \\
&+ \frac{1 - 2q}{2}\left(\varepsilon \right) \beta_{M_0} M_0 |w(t)|^{\frac{1}{2}}\|h\|_{L^2_{\mu}}^2 + 2|w(t)||\phi||_{L^2_{\mu}}^2 + \varnothing_2 \int_{\Omega} \mu G(x, u)dx \\
&+ \varnothing_2 \int_{\Omega} \mu \phi (x)dx + (2\alpha^{p+1} \varnothing_2 \varnothing_3)^p \left(\frac{p + 1}{p}\right)^{-p} |w(t)|^{p+1}\|h\|_{L^{p+1}_{\mu}}^{p+1}.
\end{align*}
\]

By condition (3.3), we have
\[
2\varepsilon(g(x, u), u) \geq 2\varepsilon \left(\int_{\Omega} \mu G(x, u)dx + \int_{\Omega} \mu \phi (x)dx\right).
\]

(4.14)

Substitute (4.14) into (4.12) to obtain
\[
\begin{align*}
\frac{d}{dt} \left[\|v\|_{L^2_{\mu}}^2 + \varepsilon \int_{0}^{\|v\|_{L^2_{\mu}}} M(s)ds - \varepsilon \|\nabla u\|_2^2 + 2\varepsilon \|u\|_{L^2_{\mu}}^2 + 2\int_{\Omega} \mu G(x, u)dx\right] \\
+ \left(2\varepsilon\mu\|\nabla u\|_2^2 \right) + \left(3 + 4\varepsilon^{-1}M_0b_0\right) |w(t)|^2\|\nabla h\|^2 + 2\varepsilon|w(t)|^2\|h\|_{L^2_{\mu}}^2 \\
+ \frac{1 - 2q}{2}\left(\varepsilon \right) \beta_{M_0} M_0 |w(t)|^{\frac{1}{2}}\|h\|_{L^2_{\mu}}^2 + 2|w(t)||\phi||_{L^2_{\mu}}^2 + \varnothing_2 \int_{\Omega} \mu G(x, u)dx + 2\varepsilon \int_{\Omega} \mu \phi (x)dx \\
\leq 2\alpha^{-1}\lambda_1^{-m}\|f\|_{L^p_{\mu}}^2 + (3 + 4\varepsilon^{-1}M_0b_0)|w(t)|^2\|\nabla h\|^2 + 2\varepsilon|w(t)|^2\|h\|_{L^2_{\mu}}^2 \\
+ \frac{1 - 2q}{2}\left(\varepsilon \right) \beta_{M_0} M_0 |w(t)|^{\frac{1}{2}}\|h\|_{L^2_{\mu}}^2 + 2|w(t)||\phi||_{L^2_{\mu}}^2 + \varnothing_2 \int_{\Omega} \mu G(x, u)dx + 2\varepsilon \int_{\Omega} \mu \phi (x)dx \\
+ \varnothing_2 \int_{\Omega} \mu \phi (x)dx + (2\alpha^{p+1} \varnothing_2 \varnothing_3)^p \left(\frac{p + 1}{p}\right)^{-p} |w(t)|^{p+1}\|h\|_{L^{p+1}_{\mu}}^{p+1}.
\end{align*}
\]

(4.15)

According to (4.1), we get
\[
\begin{align*}
&\frac{d}{dt} \left[\|v\|_{L^2_{\mu}}^2 + \varepsilon \int_{0}^{\|v\|_{L^2_{\mu}}} M(s)ds - \varepsilon \|\nabla u\|_2^2 + 2\varepsilon \|u\|_{L^2_{\mu}}^2 + 2\int_{\Omega} \mu G(x, u)dx\right] \\
+ \alpha \left[\|v\|_{L^2_{\mu}}^2 + \varepsilon \int_{0}^{\|v\|_{L^2_{\mu}}} M(s)ds - \varepsilon \|\nabla u\|_2^2 + 2\varepsilon \|u\|_{L^2_{\mu}}^2 + 2\int_{\Omega} \mu G(x, u)dx\right] \\
\leq 2\alpha^{-1}\lambda_1^{-m}\|f\|_{L^p_{\mu}}^2 + C_0(1 + |w(t)|^2 + |w(t)|^{\frac{1}{2}} + |w(t)|^{p+1}),
\end{align*}
\]

(4.16)

where
\[
C_0 = \text{max}\left\{\begin{array}{l}
(3 + 4\varepsilon^{-1}M_0b_0)|\nabla h|_2^2 + 2\varepsilon|\phi||_{L^2_{\mu}}^2 + |\phi||_{L^2_{\mu}}^2, \varnothing_2 \int_{\Omega} \mu \phi (x)dx,
\end{array}\right\}
\]

\[
\frac{1 - 2q}{2}\left(\varepsilon \right) \beta_{M_0} M_0 |w(t)|^{\frac{1}{2}}\|h\|_{L^2_{\mu}}^2 + (2\alpha^{p+1} \varnothing_2 \varnothing_3)^p \left(\frac{p + 1}{p}\right)^{-p} |w(t)|^{p+1}\|h\|_{L^{p+1}_{\mu}}^{p+1}.
\]

Using the Gronwall inequality to integrate (4.16) over \([\tau - t, \tau]\) with \(t \geq 0\) and replacing \(w\) by \(\theta\), we obtain
\[e^{\alpha t} \left[\|v\|_{L^p_s}^2 + b_0 \int_0^{\|v\|_{L_p}^2} M(s) ds - \varepsilon \|v_m(t)\|^2 + \varepsilon^2 \|u\|_{L^p_{t,s}}^2 + 2 \int_\Omega \mu G(x, u) dx \right] \]

\[\leq e^{\alpha(t-t)} \left[\|v(t-t)\|_{L^p_{t,s}}^2 + b_0 \int_0^{\|v\|_{L_p}^2} M(s) ds - \varepsilon \|v_m(t-t)\|^2 \right. \]

\[+ \varepsilon^2 \|u(t-t)\|_{L^p_{t,s}}^2 + 2 \int_\Omega \mu G(x, u(t-t)) dx \right] + 2 \alpha^{-1} \lambda_{1-l-m} \int_\tau^r e^{\alpha \|f(\tau, \xi)\|^2_{L^p_{t,s}}} d\xi \]

\[+ C_{01} \int_{\tau-t} e^{\alpha(1 + |\theta \cdot w(\xi)|^2 + |\theta \cdot w(\xi)|^{p+1})} d\xi, \]

then

\[\|v(t, \tau - t, \theta \cdot w, \nu\cdot t)\|_{L^p_{t,s}}^2 + b_0 \int_0^{\|v\|_{L_p}^2} M(s) ds - \varepsilon \|v_m(t, \tau - t, \theta \cdot w, \nu\cdot t)\|^2 \]

\[+ \varepsilon^2 \|u(t, \tau - t, \theta \cdot w, \nu\cdot t)\|_{L^p_{t,s}}^2 + 2 \int_\Omega \mu G(x, u(t, \tau - t, \theta \cdot w, \nu\cdot t)) dx \]

\[\leq e^{-\alpha t} \left[\|v(t-t)\|_{L^p_{t,s}}^2 + b_0 \int_0^{\|v\|_{L_p}^2} M(s) ds - \varepsilon \|v_m(t-t)\|^2 \right. \]

\[+ \varepsilon^2 \|u(t-t)\|_{L^p_{t,s}}^2 + 2 \int_\Omega \mu G(x, u(t-t)) dx \right] + 2 \alpha^{-1} \lambda_{1-l-m} e^{-\alpha t} \int_\tau^r e^{\alpha \|f(\tau, \xi)\|^2_{L^p_{t,s}}} d\xi \]

\[+ C_{00} e^{-\alpha t} \int_{\tau-t} e^{\alpha(1 + |\theta \cdot w(\xi)|^2 + |\theta \cdot w(\xi)|^{p+1})} d\xi. \]

By \((3.7)\), we have

\[\int_\Omega \mu G(x, u(t-t)) dx \leq C_d \left(\|\phi\|_{L^p_{t,s}}^2 + \|\phi\|_{L^p_{t,s}}^2 + \|u\|_{L^p_{t,s}}^2 + \|u\|_{L^p_{t,s}}^2 \right) \leq C_{00} \left(1 + \|u\|_{L^p_{t,s}}^2 + \|u\|_{L^p_{t,s}}^2 \right). \]

Since \((u(t-t), v(t-t)) \in B_0(t-t, \theta \cdot w)\) when \(t \to +\infty\)

\[e^{-\alpha t} \left[\|v(t-t)\|_{L^p_{t,s}}^2 + b_0 \int_0^{\|v\|_{L_p}^2} M(s) ds - \varepsilon \|v_m(t-t)\|^2 + \varepsilon^2 \|u(t-t)\|_{L^p_{t,s}}^2 + 2 \int_\Omega \mu G(x, u(t-t)) dx \right] \]

\[\leq C_{0} e^{-\alpha t} \left(1 + \|v(t-t)\|_{L^p_{t,s}}^2 + \|v_m(t-t)\|^2 + \|v_m(t-t)\|^{p+1} \right) \to 0, \]

and there exists \(T_0 = T_0(t, w, B_0)\) such that for all \(t \geq T_0,\)

\[C_{00} e^{-\alpha t} \left(1 + \|v(t-t)\|_{L^p_{t,s}}^2 + \|v_m(t-t)\|^2 + \|v_m(t-t)\|^{p+1} \right) \leq 1. \]

By \((3.4)\), it is easy to get to any \(t \geq 0,\)

\[-2 \int_\Omega G(x, u) dx \leq -2C_0 \int_\Omega |u|^{p+1} dx + 2 \int_\Omega \phi_2 dx \leq 2 \int_\Omega \phi_2 dx. \]

When \(|\xi| \to \infty, \omega(\xi)\) at most polynomial growth,

\[C_{00} e^{-\alpha t} \int_{-\infty}^r e^{\alpha(1 + |\theta \cdot w(\xi)|^2 + |\theta \cdot w(\xi)|^{p+1})} d\xi = r_0(\tau, w). \]
We get from (4.18) and (4.21) that
\[\|\psi(t, \tau - t, \theta, x_{t_0})\|^2 + \|\psi(t, \tau - t, \theta, x_{t_0})\|^2 \]
\[\leq C_0 \left(1 + 2\alpha^{-1} \lambda^{-m} e^{-\alpha t} \int_{-\infty}^{t} e^{\alpha\|f(\cdot, \xi)\|^2} \, d\xi \right) + r_0(t, \tau) \equiv r_0(t, \tau), \]
(4.23)
and \(r_0(t, \tau) \) is bounded.
\[\square \]

Taking the inner product of (3.8) with \((-\Delta)^k \psi, k = 1, 2, \ldots, m - 1\) in \(L^2(\Omega) \), we find that
\[\frac{1}{2} \frac{d}{dt} \|\psi\|^2 = \varepsilon \|\psi\|^2 + (\alpha(x)(-\Delta)^m \psi, \psi) + \varepsilon(x)(\alpha(x)(-\Delta)^m u, (-\Delta)^k \psi) \]
\[- \varepsilon^2(u, (-\Delta)^k \psi) - (b(x)M(\|\psi\|^2)(-\Delta)^m u, (-\Delta)^k \psi) - (g(x, u, (-\Delta)^k \psi) \]
\[+ (f(x, t, (-\Delta)^k \psi) + \varepsilon w(t)(h, (-\Delta)^k \psi) - w(t)(a(x)(-\Delta)^m h, (-\Delta)^k \psi). \]
(4.24)

For each term on the right-hand side of (4.24):
\[\varepsilon(x)(\alpha(x)(-\Delta)^m u, (-\Delta)^k \psi) = \varepsilon(x)(\alpha(x)(-\Delta)^m u, \psi) + \left(\sum_{i=1}^{m-k} C_{m-k}^i \psi_{-i} \psi \right), \]
(4.25)
\[\varepsilon(x)w(t)(a(x)\psi, (-\Delta)^k \psi) = \varepsilon(x)w(t)(a(x)\psi, \psi) + \left(\sum_{i=1}^{m-k} C_{m-k}^i \psi_{-i} \psi \right), \]
(4.26)
\[(b(x)M(\|\psi\|^2)(-\Delta)^m u, (-\Delta)^k \psi) \]
\[= b_0 M(\|\psi\|^2)(\alpha(x)(\psi_{-k} b(x), \psi_{-k} u) + M(\|\psi\|^2) \left(\sum_{i=1}^{m-k} C_{m-k}^i \psi_{-i} \psi \right), \]
(4.27)
\[\varepsilon^2(u, (-\Delta)^k \psi) = \varepsilon^2(u, (-\Delta)^k \psi + \varepsilon u - hw(t)) = \varepsilon^2 \frac{d}{dt} \|\psi\|^2 + \varepsilon \|\psi\|^2 - \varepsilon^2 w(t)(\psi, \psi), \]
\[(g(x, u, (-\Delta)^k \psi) = (\psi^2 g(x, u, \psi), \psi) \leq \left(\int_{\Omega} (c_3 u + \phi_2(x)) \psi \, dx \right), \]
(4.28)
\[\leq c_5 \left(\int_{\Omega} |u| \psi \, dx \right) + \int_{\Omega} \phi_2(x) \psi \, dx \]
(4.29)
\[\leq c_5 \|u\|^2 \|\psi\| + \|\phi_2(x)\| \|\psi\|^2 \]
\[\leq \frac{a_{00}}{8} \|\psi\|^2 + C_4 (r_0(t, \tau) \]
\[(f(x, t, (-\Delta)^k \psi) = (\psi^2 f(x, t, \psi), \psi) \leq \|\psi^2 f(x, t)\| \|\psi\|^2 \leq \frac{a_{00}}{8} \|\psi\|^2 + \frac{2\lambda^m}{a_{00}} \|\psi^2 f(x, t)\|^2, \]
(4.30)
moreover,

\[(\nabla^{m-k-i}v^i a(x), \nabla^{m+k}v) \leq a_i \|\nabla^{m-k-i}v\| \|\nabla^{m+k}v\|, \quad i = 1, 2, \ldots, m-k, \quad a_i = \|v^i a(x)\|_{\infty} .\]

(4.31)

According to the interpolation inequality, we have

\[\|\nabla^{m-k-i}v\| \leq C_i \|\nabla^{m+k}v\|^{a_i} \|v\|^{1-a_i}, \quad a_i = \frac{m+k-i}{m+k},\]

then

\[(C_{m-k}^i \nabla^{m-k-i}v^i a(x), \nabla^{m+k}v) \leq C_{m-k}^i C_i a_i \|v\|^{1-a_i} \|\nabla^{m+k}v\|^{1+a_i}\]

\[\leq \frac{a_{00}}{8(m-k)} \|\nabla^{m+k}v\|^2 + \frac{1 - a_i}{2} \left(\frac{a_{00}}{4(1-a_i)(m-k)}\right)^{\frac{1+a_i}{2}} (C_{m-k}^i C_i a_i)^{\frac{1+a_i}{2}} \|v\|^2,\]

(4.32)

\[(C_{m-k}^i \nabla^{m-k-i}v^i a(x), \nabla^{m+k}v) \leq \frac{a_{00}b_0M_0}{8(m-k)} \|\nabla^{m+k}u\|^2 + \frac{2(m-k)}{a_{00}b_0M_0} (C_{m-k}^i a_i)^{2} \|\nabla^{m+k}v\|^2\]

\[\leq \frac{a_{00}b_0M_0}{8(m-k)} \|\nabla^{m+k}v\|^2 + \frac{a_{00}}{8(m-k)} \|\nabla^{m+k}v\|^2\]

\[+ \left(1 - a_i\right) \frac{a_{00}}{8a_i(m-k)} \left(\frac{2(m-k)}{a_{00}b_0M_0} (C_{m-k}^i a_i C_i)^{2}\right)^{\frac{1}{2}} \|v\|^2,\]

(4.33)

\[b_0M(\|\nabla u\|^2 w(t)(a(x)\nabla^{m+k}u, \nabla^{m+k}h)) \leq b_0 a_0 M_0 (1 + \|\nabla u\|^2) |w(t)| \|\nabla^{m+k}u\| \|\nabla^{m+k}h\|\]

\[\leq \frac{\varepsilon b_0 a_0 M_0}{8} \|\nabla^{m+k}u\|^2 + 2 \varepsilon^{-1} a_{00}^{-1} b_0 a_0^{-2} M_0 (1 + \|\nabla u\|^2)^2 |w(t)|^2 \|\nabla^{m+k}h\|^2,\]

(4.34)

\[M(\|\nabla u\|^2) \left(\sum_{i=1}^{m-k} C_{m-k}^i \nabla^{m-k-i}v^i b(x), \nabla^{m+k}v\right) \]

\[\leq M_0 b_0 (1 + \|\nabla u\|^2) \sum_{i=1}^{m-k} C_{m-k}^i a_i \|\nabla^{m-k-i}v\| \|\nabla^{m+k}u\|\]

\[\leq \frac{\varepsilon b_0 a_0 M_0}{8} \|\nabla^{m+k}u\|^2 + \varepsilon^{-1} a_{00}^{-1} b_0 a_0^{-2} M_0 \sum_{i=1}^{m-k} (C_{m-k}^i a_i)^{2} \|\nabla^{m-k-i}v\|^2\]

\[\leq \frac{\varepsilon b_0 a_0 M_0}{8} \|\nabla^{m+k}u\|^2 + \frac{a_{00}}{8} \|\nabla^{m+k}v\|^2\]

\[+ \varepsilon^{-1} a_{00}^{-1} b_0 a_0^{-2} \sum_{i=1}^{m-k} \left(1 - a_i\right) \left(\frac{a_{00}}{8a_i(m-k)}\right)^{\frac{1}{2}} (C_{m-k}^i a_i C_i)^{\frac{1}{2}} \|v\|^2.\]

By (4.25)–(4.30) and (4.32)–(4.35), we get

\[
\frac{d}{dt}[\|v\|^2 - \varepsilon (a(x)\nabla^{m+k}u, \nabla^{m+k}u) + \varepsilon \|v\|^2] + b_0M(\|\nabla u\|^2) \frac{d}{dt}(a(x)\nabla^{m+k}u, \nabla^{m+k}u) + 2(a(x)\nabla^{m+k}v, \nabla^{m+k}v) - \frac{4}{4} a_{00} \|\nabla^{m+k}v\|^2 - 2\varepsilon \|v\|^2\]

\[+ 2\varepsilon b_0M(\|\nabla u\|^2)(a(x)\nabla^{m+k}u, \nabla^{m+k}u) - \frac{3\varepsilon a_0 b_0 M_0}{4} \|\nabla^{m+k}u\|^2\]

\[- 2\varepsilon^2 (a(x)\nabla^{m+k}u, \nabla^{m+k}u) + 2\varepsilon \|v\|^2\]

\[\leq \sum_{i=1}^{m-k} \left(1 - a_i\right) \left(\frac{a_{00}}{4(1-a_i)(m-k)}\right)^{\frac{1}{2}} (C_{m-k}^i a_i C_i)^{\frac{1}{2}} \|v\|^2\]

\[+ 2\varepsilon \sum_{i=1}^{m-k} \left(1 - a_i\right) \left(\frac{a_{00}}{8a_i(m-k)}\right)^{\frac{1}{2}} \left(\frac{2(m-k)}{a_{00} b_0 M_0} (C_{m-k}^i a_i C_i)^{2}\right)^{\frac{1}{2}} \|v\|^2\]

(4.36)
Using the Cauchy-Schwarz inequality, Young's inequality and Holder's inequality, etc. we have
\[2\varepsilon w(t)(\Delta^k u, \Delta^k h) \leq \varepsilon^2 a_{00}^2\|\Delta^k u\|^2 + a_{00}^3w(t)^2\|\Delta^k h\|^2, \tag{4.37}\]
\[2\varepsilon^2w(t)(\Delta^k u, \epsilon\Delta^k h) \leq \varepsilon^3\|\Delta^k u\|^2 + \varepsilon|w(t)|^2\|\Delta^k h\|^2, \tag{4.38}\]
\[2\varepsilon w(t)(\Delta^m h, \epsilon^2\Delta^k u) \leq \epsilon\|\Delta^k u\|^2 + \epsilon|w(t)|^2\|\Delta^k h\|^2, \tag{4.39}\]

2w(t)(a(x)(\Delta^m h, \epsilon^2\Delta^k u)) = \epsilon \left(\sum_{i=1}^{m-k} C_{i-m} a_{00} \frac{a_{00}}{(m-k)} \right) \frac{1}{\epsilon} \left(\int_{\Omega} v \right)^{\frac{m-k}{2}} \|v\|^2.

Substitute (4.37)-(4.40) into (4.36) to obtain
\[\frac{d}{dt}\|\Delta^k u\|^2 - \varepsilon(a(x)\Delta^m u, \Delta^m u) + \varepsilon\|\Delta^k u\|^2 + b_0M(\|\Delta^m u\|^2) \frac{d}{dt}(a(x)\Delta^m u, \Delta^m u) + 2(a(x)\Delta^m u, \Delta^m u) - \frac{6}{4} a_{00}\|\Delta^m u\|^2 - 3\varepsilon\|\Delta^k u\|^2 + 2b_0M(\|\Delta^m u\|^2)(a(x)\Delta^m u, \Delta^m u)
- \frac{3\varepsilon a_{00}b_0M_0}{4}\|\Delta^m u\|^2 - 2\varepsilon^2(a(x)\Delta^m u, \Delta^m u) - \varepsilon^2a_{00}\|\Delta^m u\|^2 + \epsilon\|\Delta^k u\|^2
\leq \sum_{i=1}^{m-k} \left(1 - a_i \right) \left(\frac{a_{00}}{4(1 - a_i)(m-k)} \right) \frac{1}{\epsilon} \left(\int_{\Omega} v \right)^{\frac{m-k}{2}} \|v\|^2
+ 2\varepsilon \sum_{i=1}^{m-k} \left(1 - a_i \right) \left(\frac{a_{00}}{8a_i(m-k)} \right) \frac{1}{\epsilon} \left(\frac{2(m-k)}{a_0b_0M_0} \right) \frac{1}{\epsilon} \left(\int_{\Omega} v \right)^{\frac{m-k}{2}} \|v\|^2
+ 2\varepsilon \sum_{i=1}^{m-k} \left(1 - a_i \right) (\varepsilon a_{00}b_0M_0) \frac{1}{\epsilon} \left(\frac{a_{00}}{8a_i(m-k)} \right) \frac{1}{\epsilon} \left(\int_{\Omega} v \right)^{\frac{m-k}{2}} \|v\|^2
+ 4\varepsilon a_{00} b_0^2 M_0 (1 + \|\Delta^m u\|^2) \|w(t)\|^2 \|\Delta^m u\|^2 + \frac{2\lambda^m}{a_{00}} \|\Delta^k f(x, t)\|^2
+ 2C_{00} \left(\phi(x) \right)^2 + 5\varepsilon a_{00} b_0^2 \|w(t)\|^2 \|\Delta^m u\|^2 + 2\varepsilon |w(t)|^2 \|\Delta^k u\|^2
+ 4\varepsilon a_{00} b_0^2 \|w(t)\|^2 \sum_{i=1}^{m-k} (C_{i-m} a_i)^2 \lambda^i \|\Delta^m u\|^2.

When \(\frac{d}{dt}(a(x)\Delta^m u, \Delta^m u) + 2\varepsilon(a(x)\Delta^m u, \Delta^m u) \geq 0, \)
\[b_0M(\|\Delta^m u\|^2) \left(\frac{d}{dt}(a(x)\Delta^m u, \Delta^m u) + 2\varepsilon(a(x)\Delta^m u, \Delta^m u) \right) \geq \frac{d}{dt}(b_0M_0(a(x)\Delta^m u, \Delta^m u)) + 2eb_0M_0(a(x)\Delta^m u, \Delta^m u); \]
else
\[b_0 M(\|v^m u\|^2) \left(\frac{d}{dt} (a(x)v^m u, v^m u) + 2\varepsilon (a(x)v^m u, v^m u) \right) \]
\[\geq \frac{d}{dt} \left(b_0 C(\|v^m u\|^2) (a(x)v^m u, v^m u) + 2\varepsilon b_0 C(\|v^m u\|^2) (a(x)v^m u, v^m u) \right), \]

then (4.41) is transformed into
\[\frac{d}{dt} (v^k v^2 + (b_0 M_0 (C(\|v^m u\|^2))) - \varepsilon (a(x)v^m u, v^m u) + \varepsilon \|v^k u\|^2) \]
\[+ 2(a(x)v^m v, v^m v) - \frac{6 + \varepsilon}{a_0} \|v^m u\|^2 - 3\varepsilon \|v^k u\|^2 + 2 \frac{b_0 M_0 (C(\|v^m u\|^2)))}{a_0} (a(x)v^m u, v^m u) - \frac{3 \varepsilon a_{00} b_0 M_0}{4} \|v^m u\|^2 \]
\[- 2\varepsilon (a(x)v^m u, v^m u) - \varepsilon^2 a_{00} \|v^m u\|^2 + \varepsilon \|v^k u\|^2 \]
\[\leq \sum_{i=1}^{m-k} (1 - a_i) \left(\frac{a_{00}}{4(1 - a_i)(m - k)} \right) \frac{\sigma}{a_0} \left(\frac{2(m - k)}{a_0 b_0 M_0} (C_{i-1} a_i C_i)^2 \right) \frac{v^2}{\|v\|^2} \]
\[+ 2 \sum_{i=1}^{m-k} (1 - a_i) (\varepsilon^{-1} a_{00} b_0 M_0)^{\frac{1}{2}} \left(\frac{a_{00}}{8a_0(m - k)} \right)^{\frac{1}{2}} \left(\sigma (C_{i-1} a_i C_i (1 + \|v^m u\|^2)) \right) \frac{v^2}{\|v\|^2} \]
\[+ 2 \sum_{i=1}^{m-k} (1 - a_i) (\varepsilon^{-1} a_{00} b_0 M_0)^{\frac{1}{2}} \left(\frac{a_{00}}{8a_0(m - k)} \right)^{\frac{1}{2}} \left(\sigma (C_{i-1} a_i C_i (1 + \|v^m u\|^2)) \right) \frac{v^2}{\|v\|^2} \]
\[+ 4 \varepsilon^{-1} a_{00} b_0 M_0 \sum_{i=1}^{m-k} (C_{i-1} a_i C_i) \lambda_i^{-1} \|v^m h\|^2. \]

By \(2(a(x)v^m v, v^m v) \geq 2a_{00} \|v^m v\|^2, (a(x)v^m u, v^m u) \geq a_{00} \|v^m u\|^2, (4.1), \)

we have
\[\frac{d}{dt} (\|v^k u\|^2 + (b_0 M_0 (C(\|v^m u\|^2))) - \varepsilon (a(x)v^m u, v^m u) + \varepsilon \|v^k u\|^2) \]
\[+ \sigma (\|v^k u\|^2 + (b_0 M_0 (C(\|v^m u\|^2))) - \varepsilon (a(x)v^m u, v^m u) + \varepsilon \|v^k u\|^2) \]
\[\leq C_2 k (1 + |w(t)|^2) + \frac{2 \lambda_i^{-m} \|v^k f(x, t)\|^2}{a_0}. \]

When \(k = m, (4.43)\) is also true, which will not be detailed here.

Using the Gronwall inequality to integrate (4.43) over \([\tau - t, \tau]\) and replacing \(w\) by \(\theta, w\) we obtain
\[e^{\theta r} (\|v^k u\|^2 + (b_0 M_0 (C(\|v^m u\|^2))) - \varepsilon (a(x)v^m u, v^m u) + \varepsilon \|v^k u\|^2) \]
\[\leq e^{\theta (\tau - t)} (\|v^k u(\tau - t)\|^2 + (b_0 M_0 (C(\|v^m u\|^2))) - \varepsilon (a(x)v^m u(\tau - t), v^m u(\tau - t))) \]
\[+ \varepsilon \|v^k u(\tau - t)\|^2 \]
\[+ \int_{\tau - t}^{\tau} e^{\theta (\xi - (\tau - t))} C_2 k (1 + |w(\xi)|^2) d\xi + \frac{2 \lambda_i^{-m} \|v^k f(x, \xi)\|^2}{a_0} \int_{\tau - t}^{\tau} e^{\theta (\xi - (\tau - t))} d\xi, \]

moreover,
\[(\|v^k u\|^2 + (b_0 M_0 (C(\|v^m u\|^2))) - \varepsilon (a(x)v^m u, v^m u) + \varepsilon \|v^k u\|^2) \]
\[\leq e^{\theta (\tau - t)} (\|v^k u(\tau - t)\|^2 + (b_0 M_0 (C(\|v^m u\|^2))) - \varepsilon (a(x)v^m u(\tau - t), v^m u(\tau - t))) \]
\[+ \varepsilon \|v^k u(\tau - t)\|^2 \]
\[+ e^{\theta t} \int_{\tau - t}^{\tau} e^{\theta (\xi - (\tau - t))} C_2 k (1 + |w(\xi)|^2) d\xi + \frac{2 \lambda_i^{-m} e^{-\theta(t - \tau)} \|v^k f(x, \xi)\|^2}{a_0} \int_{\tau - t}^{\tau} e^{\theta (\xi - (\tau - t))} d\xi. \]
Since \((u(t - t), v(t - t)) \in B_k(t - t, \theta, w)\), when \(t \to +\infty\),
\[
e^{-\alpha||V^k(v(t - t)||^2 + (b_0 M_d(\|\nabla^m u\|)^2) - e)(a(x)\nabla^m u(t - t), \nabla^m u(t - t)) + \varepsilon\|\nabla u(t - t)\|^2]}
\leq e^{-\alpha||V^k(v(t - t)||^2 + (b_0 M_d(\|\nabla^m u\|)^2)) - e)a\|\nabla^m u(t - t)||^2 + \varepsilon\|\nabla u(t - t)||^2} \to 0,
\]
then there exists \(T_k = T_k(t, w, B_k)\) such that for all \(t \geq T_k\)
\[
e^{-\alpha||V^k(v(t - t)||^2 + (b_0 M_d(\|\nabla^m u\|)^2) - \varepsilon)a\|\nabla^m u(t - t)||^2 + \varepsilon\|\nabla u(t - t)||^2} \leq 1.
\]
When \(|\xi| \to \infty w(\xi)\) at most polynomial growth,
\[
e^{-\alpha\int_{-\infty}^{r} e^{\alpha\xi}d\xi} = r_\alpha(t, w).
\]
We get from (4.45)-(4.47), \((a(x)\nabla^m u, \nabla^m u) \geq a_0||\nabla^m u||^2\) that
\[
\|\nabla^k(v, \tau - t, \theta, w, v_{t-})\|^2 + ||\nabla^m u(t, \tau - t, \theta, w, v_{t-})||^2
\leq C_k \left(1 + \frac{2\lambda_k - m}{a_0}e^{-\alpha\xi} \int_{-\infty}^{r} e^{\alpha\xi\|\nabla^k f(x, \xi)\|^2}d\xi \right) + r_\alpha(t, w) \equiv r_\alpha(t, w),
\]
and \(r_\alpha(t, w)\) are bounded.

Lemma 4.1 is derived from (4.23) and (4.48).

Lemma 4.1 is proved.

Considering the eigenvalue problem
\[
(-\Delta)^{m+k}u = \lambda^{m+k}u, u|_\Gamma = 0,
\]
the problem (3.8) has a family of eigenfunctions \(\{e_j\}_{j=1}^{\infty}\) with the eigenvalues \(\{\lambda_j\}_{j=1}^{\infty}: \lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_j \to \infty (j \to \infty)\), such that \(\{e_j\}_{j=1}^{\infty}\) is an orthonormal basis of \(L_0^2(\Omega)\). Given \(n\) let \(Q_n = \text{span}\{e_1, ..., e_n\}\) and \(P_n : V_k(\Omega) \to Q_n\)
be the projection operator.

Lemma 4.2. Suppose \(M\) satisfies (M), \(h(x) \in V_{m+k}(\Omega), k = 0, 1, ..., m\) (3.2)-(3.6) holds \((F_1)\) and for \(\forall \eta > 0, x \in \Omega, B_k = \{B_k(t, w) : t \in \Omega, w \in B_k\} \in D_k\), there exists \(T_k = T_k(t, w, B_k, \eta_k) > 0\), \(N_k = N_k(t, w, \eta_k) \geq 0\) such that the solution of (3.8) satisfies for \(t \geq T_k, n \geq N_k\)
\[
\| (I - P_n)(v(t, \tau - t, \theta, w))\|^2 + ||(I - P_n)u(t, \tau - t, \theta, w)||^2_{m+k} \leq \eta_k.
\]

Proof. Let \(u_{n+1} = P_n u, u_{n+2} = u - u_{n+1}, v_{n+1} = P_n v, v_{n+2} = v - v_{n+1}\). Applying \((I - P_n)\) to the second equation of (3.8), we obtain
\[
\frac{dv_{n+2}}{dt} = ev_{n+2} - a(x)(-\Delta)^m v_{n+2} + e a(x)(-\Delta)^m u_{n+2} - e^2 u_{n+2} - b(x)(I - P_n) M(\|\nabla^m u\|^2)(-\Delta)^m u
\]
Taking the inner product of the resulting equation (4.49) with \(v_{n+2} \in L_0^2(\Omega)\), we have
\[
\frac{1}{2} \frac{d}{dt} \|v_{n+2}\|^2_{L_0^2} = e \|v_{n+2}\|^2_{L_0^2} - e(-\Delta)^m u_{n+2} - e^2 (u_{n+2}, v_{n+2})_L^2 - b_0(l(I - P_n) M(\|\nabla^m u\|^2)(-\Delta)^m u, v_{n+2}) - ((I - P_n) g(x, x), v_{n+2})_L^2
\]
Applying \((I - P_n)\) to the first equation of (3.8), we get
\[
v_{n+2} = \frac{d u_{n+2}}{dt} + h w(t).
\]
For the third and fourth terms on the right-hand side of (4.49), we obtain
\[\epsilon((\Delta)u_{n,2}, v_{n,2}) = \epsilon((\Delta)u_{n,2}, d\mu_{n,2} + \epsilon u_{n,2} - \nabla h(t)) = \epsilon((\Delta)u_{n,2}, du_{n,2} + \epsilon u_{n,2} - \nabla h(t))_{L^p} \]
\[= \frac{\epsilon}{2} \frac{d}{dt}\|\nabla u_{n,2}\|^2 + \epsilon^2\|\nabla u_{n,2}\|^2 - \epsilon w(t)((\Delta)u_{n,2}, h) \]
\[- \frac{\epsilon^2}{2} \frac{d}{dt}\|u_{n,2}\|^2 \leq \epsilon^2\|u_{n,2}\|^2 + \epsilon w(t)(u_{n,2}, h)_{L^p}, \]
\[(4.52) \]
for the fifth term on the right-hand side of (4.49), we have
\[b_0((I - P_0)M(\|\nabla u\|^2)((\Delta)u), v_{n,2}) \]
\[= b_0(M(\|\nabla u\|^2)((\Delta)u), du_{n,2} + \epsilon u_{n,2} - \nabla h(t)) \]
\[= \frac{1}{2} b_0(M(\|\nabla u\|^2)) \frac{d}{dt}\|\nabla u_{n,2}\|^2 + \epsilon b_0(M(\|\nabla u\|^2)) \|\nabla u_{n,2}\|^2 - b_0(M(\|\nabla u\|^2)) w(t)((\Delta)u_{n,2}, h), \]
\[(4.53) \]
for the sixth term on the right-hand side of (4.49), we have
\[((I - P_0)g(x, u), v_{n,2})_{L^p} = ((I - P_0)g(x, u), du_{n,2} + \epsilon u_{n,2} - \nabla h(t))_{L^p} \]
\[= \frac{d}{dt}((I - P_0)g(x, u), u_{n,2})_{L^p} - ((I - P_0)g(x, u)u_{n,2})_{L^p} \]
\[+ \epsilon((I - P_0)g(x, u), u_{n,2})_{L^p} - ((I - P_0)g(x, u), \nabla h(t))_{L^p}, \]
\[(4.54) \]
for the seventh, eighth, and ninth terms on the right-hand side of (4.49), we have
\[((I - P_0)f(x, t), v_{n,2})_{L^p} \leq \frac{1}{4} \|\nabla u_{n,2}\|^2 + \left[\frac{1}{\alpha_{n+1}^m} \right] \|\nabla h(t)\|^2, \]
\[(4.55) \]
\[\epsilon w(t)(h(x), v_{n,2})_{L^p} \leq \frac{1}{4} \|\nabla u_{n,2}\|^2 + \left[\frac{\epsilon}{\alpha_{n+1}^m} \right] \|h(x)\|^2, \]
\[(4.56) \]
\[w(t)((\Delta)h, v_{n,2}) \leq \frac{1}{4} \|\nabla u_{n,2}\|^2 + \epsilon \|w(t)\|^2 \|\nabla h(x)\|^2, \]
\[(4.57) \]
When \(\frac{d}{dt}\|\nabla u_{n,2}\|^2 + 2\epsilon \|\nabla u_{n,2}\|^2 \geq 0 \)
\[b_0(M(\|\nabla u\|^2)) \left(\frac{d}{dt} \|\nabla u_{n,2}\|^2 + 2\epsilon \|\nabla u_{n,2}\|^2 \right) \geq \frac{d}{dt} \left(b_0(M(\|\nabla u_{n,2}\|^2)) + 2\epsilon b_0(M(\|\nabla u_{n,2}\|^2)), \right), \]
\[(4.58) \]
else
\[b_0(M(\|\nabla u\|^2)) \left(\frac{d}{dt} \|\nabla u_{n,2}\|^2 + 2\epsilon \|\nabla u_{n,2}\|^2 \right) \geq \frac{d}{dt} \left(b_0(M(\|\nabla u_{n,2}\|^2)) + 2\epsilon b_0(M(\|\nabla u_{n,2}\|^2)) \|\nabla u_{n,2}\|^2. \right), \]
\[(4.59) \]
By using Young’s inequality and Holder’s inequality, we can get
\[2b_0(M(\|\nabla u\|^2)) w(t)(\|\nabla u_{n,2}\|, h) \leq 2b_0(M(\|\nabla u\|^2)) w(t)(\|\nabla u_{n,2}\|, \|w(t)\|) \|\nabla h\| \]
\[\leq \frac{\epsilon b_0(M(\|\nabla u\|^2))}{2} \|\nabla u_{n,2}\|^2 + 2\frac{\epsilon b_0(M(\|\nabla u\|^2))}{\epsilon M_0} \|w(t)\|^2 \|\nabla h\|, \]
\[(4.60) \]
\[2\epsilon^2 w(t)(h(x), u_{n,2})_{L^p} - 2\epsilon w(t)(\|\nabla u_{n,2}\|, h(x)) \]
\[\leq \epsilon^2 \|u_{n,2}\|^2 + \epsilon^2 \|\nabla u_{n,2}\|^2 + \epsilon \|w(t)\|^2 \|h\|^2_{L^p} + \|w(t)\|^2 \|\nabla h\|^2. \]
\[(4.61) \]
By (3.5), we have
\[
2((I - P_n)g(x, u)u_{n, 2}), (\frac{\partial}{\partial x}((I - P_n)g(x, u)u_{n, 2}))_{L_p^2} \leq 2\|\phi_1\|_{L_p^2}\|u_{n, 2}\|_{L_p^2} + 2c\|u_{n, 2}\|_{L_p^2} + 2((I - P_n)g(x, u)u_{n, 2})_{L_p^2}
\]
\[
\leq \frac{\varepsilon b_0 M_0}{2}\|\nabla u_{n, 2}\|^{\frac{1}{m-1}} + \frac{C_{05}}{\varepsilon b_0 M_0}\lambda_{m+1}^{1-m}u_{n, 2}^{1-m} + C_{06}\lambda_{m+1}^{1-m}u_{n, 2}^{1-m}\|\nabla u_{n, 2}\|^{\frac{2-p}{2}}.
\]
(4.62)

\[
2w(t)((I - P_n)g(x, u), h)_{L_p^2} \leq 2\|w(t)\|\|\phi_1\|_{L_p^2}\|h\|_{L_p^2} + 2c\|w(t)\|\|h\|_{L_p^2}
\]
\[
\leq 2\|w(t)\|\|\phi_1\|_{L_p^2}\|h\|_{L_p^2} + 2C_0\|w(t)\|\|\nabla u\|^p\|h\|_{L_p^2}.
\]
(4.63)

By substituting (4.52)–(4.63) into (4.50), we have
\[
\frac{d}{dt}\left[\|v_{n, 2}\|_{L_p^2}^2 + (b_0 M_0(C(\|\nabla u\|^2)) - \varepsilon)\|\nabla u_{n, 2}\|^2 + \varepsilon^2\|u_{n, 2}\|_{L_p^2}^2 + 2((I - P_n)g(x, u), u_{n, 2})_{L_p^2}\right]
\]
\[
+ \frac{1}{2}\|\nabla v_{n, 2}\|^2 - \varepsilon\|v_{n, 2}\|_{L_p^2}^2 + (2cM(\|\nabla u\|^2) - \varepsilon M_0)\|\nabla u\|^2
\]
\[
- \varepsilon\|\nabla u\|^2 + \varepsilon\|u\|_{L_p^2}^2 + 2c((I - P_n)g(x, u), u_{n, 2})_{L_p^2}
\]
\[
\leq \left(1 + \frac{2b_0 C(\|\nabla u\|^2)}{\varepsilon M_0} + 2\varepsilon\right)\|w(t)\|^2\|\nabla h\|^2 + \left(\varepsilon + \frac{2c}{a_{m+1} \lambda^{m-1}}\right)\|w(t)\|^2\|h(x)\|_{L_p^2}^2
\]
\[
+ \frac{C_{05}}{\varepsilon b_0 M_0}\lambda_{m+1}^{1-m}u_{n, 2}^{1-m} + C_{06}\lambda_{m+1}^{1-m}u_{n, 2}^{1-m}\|\nabla u\|^{2-p} + 2\|\phi_1\|_{L_p^2}\|h\|_{L_p^2} + 2C_0\|\nabla u\|^p\|h\|_{L_p^2}^2
\]
\[
+ \frac{2}{a_{m+1} \lambda^{m-1}}\|((I - p_n)f(x, t))\|_{L_p^2}^2.
\]
(4.64)

Because, when \(N = 1, 2\), then \(1 \leq p < +\infty\); when \(N = 3, 4\), then \(1 \leq p < N/2\). Moreover, when \(n \to \infty\), \(\lambda_n \to \infty\) so given \(\eta_0 > 0\), there exists \(N_0 = N_0(\eta_0) \geq 1\) for \(n \geq N_0\)
\[
\left(1 + \frac{2b_0 C(\|\nabla u\|^2)}{\varepsilon M_0} + 2\varepsilon\right)\|w(t)\|^2\|\nabla h\|^2 + \left(\varepsilon + \frac{2c}{a_{m+1} \lambda^{m-1}}\right)\|w(t)\|^2\|h(x)\|_{L_p^2}^2
\]
\[
+ \frac{C_{05}}{\varepsilon b_0 M_0}\lambda_{m+1}^{1-m}u_{n, 2}^{1-m} + C_{06}\lambda_{m+1}^{1-m}u_{n, 2}^{1-m}\|\nabla u\|^{2-p} + 2\|\phi_1\|_{L_p^2}\|h\|_{L_p^2} + \frac{2}{a_{m+1} \lambda^{m-1}}\|((I - p_n)f(x, t))\|_{L_p^2}^2
\]
(4.65)

Then, there is an appropriate positive constant \(\sigma_2\) so that (4.64) can be reduced to
\[
\frac{d}{dt}\left[\|v_{n, 2}\|_{L_p^2}^2 + (b_0 M_0(C(\|\nabla u\|^2)) - \varepsilon)\|\nabla u_{n, 2}\|^2 + \varepsilon^2\|u_{n, 2}\|_{L_p^2}^2 + 2((I - P_n)g(x, u), u_{n, 2})_{L_p^2}\right]
\]
\[
+ \sigma_2\left[\|v_{n, 2}\|_{L_p^2}^2 + (b_0 M_0(C(\|\nabla u\|^2)) - \varepsilon)\|\nabla u_{n, 2}\|^2 + \varepsilon^2\|u_{n, 2}\|_{L_p^2}^2 + 2((I - P_n)g(x, u), u_{n, 2})_{L_p^2}\right]
\]
\[
\leq C_0\eta_0\left(1 + |w(t)|^2 + \|u(t)\|^2 + \|\nabla u\|^2\right) + \frac{2}{a_{m+1} \lambda^{m-1}}\|((I - p_n)f(x, t))\|_{L_p^2}^2.
\]
(4.66)

integrating (4.66) over \((\tau - t, \tau)\) with \(t \geq 0\) we get for all \(n \geq N_0\)
\[
\|v_{n, 2}(\tau, \tau - t, w)\|_{L_p^2}^2 + (b_0 M_0(C(\|\nabla u\|^2)) - \varepsilon)\|\nabla u_{n, 2}(\tau, \tau - t, w)\|_{L_p^2}^2
\]
\[
+ \varepsilon^2\|u_{n, 2}(\tau, \tau - t, w)\|_{L_p^2}^2 + 2((I - P_n)g(x, u), u_{n, 2}(\tau, \tau - t, w))_{L_p^2}
\]
(4.67)
\[
\leq e^{-\alpha t} \left[\|v_{n,2}(\tau - t)\|_{L^2_p}^2 + (b_0 M_0(C(\|u\|^2))) - \varepsilon \right] \|\nabla^m u_{n,2}(\tau - t)\|_{L^2_p}^2 \\
+ \varepsilon \|u_{n,2}(\tau - t)\|_{L^2_p}^2 + 2((I - P_n)g(x, u(\tau - t)), u_{n,2}(\tau - t))_{L^2_p} \\
+ C_{\text{app}} \int_{t-t}^t e^{\alpha(s-t)} \left(1 + |w(s)|^2 + \|u(s, \tau - t, w, u_{n,2})\|_{L^2_p}^{6} + \|\nabla^m u(s, \tau - t, w, u_{n,2})\|^6 \right) ds \\
+ \frac{2}{\alpha_{n+1} \lambda_{n+1}^{m-1}} \int_{t-t}^t e^{\alpha(s-t)} \|\nabla^m u(x, s)\|_{L^2_p}^2 ds.
\]

Replacing \(w \) by \(\theta, w \) in (4.67) for every \(\tau \in R^+, \tau \in R, w \in \Omega, n \geq N_0 \), we obtain
\[
\|v_{n,2}(\tau - t, \theta, w)\|_{L^2_p}^2 + (b_0 M_0(C(\|u\|^2))) - \varepsilon \right] \|\nabla^m u_{n,2}(\tau - t, \theta, w)\|_{L^2_p}^2 \\
+ \varepsilon \|u_{n,2}(\tau - t, \theta, w)\|_{L^2_p}^2 + 2((I - P_n)g(x, u), u_{n,2}(\tau - t, \theta, w))_{L^2_p} \\
\leq e^{-\alpha t} \left[\|v_{n,2}(\tau - t)\|_{L^2_p}^2 + (b_0 M_0(C(\|u\|^2))) - \varepsilon \right] \|\nabla^m u_{n,2}(\tau - t)\|_{L^2_p}^2 \\
+ \varepsilon \|u_{n,2}(\tau - t)\|_{L^2_p}^2 + 2((I - P_n)g(x, u(\tau - t)), u_{n,2}(\tau - t))_{L^2_p} \\
+ C_{\text{app}} \int_{t-t}^t e^{\alpha(s-t)} \left(1 + |w(s)|^2 + |w(s)|^6 \right) ds \\
+ \frac{2}{\alpha_{n+1} \lambda_{n+1}^{m-1}} \int_{t-t}^t e^{\alpha(s-t)} \|\nabla^m u(x, s)\|_{L^2_p}^2 ds.
\]

From (3.8), \(f(x, t) \) satisfies (F1), \(h \in V_m \) and Lemma 4.1, we have
\[
\|v_{n,2}(\tau - t, \theta, w)\|_{L^2_p}^2 + (b_0 M_0(C(\|u\|^2))) - \varepsilon \right] \|\nabla^m u_{n,2}(\tau - t, \theta, w)\|_{L^2_p}^2 \\
+ 2((I - P_n)g(x, u), u_{n,2}(\tau - t, \theta, w))_{L^2_p} \\
\leq e^{-\alpha t} \left[\|v_{n,2}(\tau - t)\|_{L^2_p}^2 + (b_0 M_0(C(\|u\|^2))) - \varepsilon \right] \|\nabla^m u_{n,2}(\tau - t)\|_{L^2_p}^2 \\
+ \varepsilon \|u_{n,2}(\tau - t)\|_{L^2_p}^2 + 2((I - P_n)g(x, u(\tau - t)), u_{n,2}(\tau - t))_{L^2_p} \\
+ 2((I - P_n)g(x, u(\tau - t)), u_{n,2}(\tau - t))_{L^2_p} + C_{\text{app}} \int_{t-t}^t e^{\alpha(s-t)} \left(1 + |w(s)|^2 + |w(s)|^6 \right) ds \\
+ \frac{2}{\alpha_{n+1} \lambda_{n+1}^{m-1}} \int_{t-t}^t e^{\alpha(s-t)} \|\nabla^m u(x, s)\|_{L^2_p}^2 ds,
\]

by \((u_{n,2}, v_{n,2}) \in B_0(\theta, t, \theta, w)\), then
\[
e^{-\alpha t} \left[\|v_{n,2}(\tau - t)\|_{L^2_p}^2 + (b_0 M_0(C(\|u\|^2))) - \varepsilon \right] \|\nabla^m u_{n,2}(\tau - t)\|_{L^2_p}^2 \\
+ 2((I - P_n)g(x, u(\tau - t)), u_{n,2}(\tau - t))_{L^2_p} \to 0, \quad t \to \infty.
\]

Taking the inner product of (4.49) with \((-\Delta)^k V_{2,2}, k = 1, 2, ..., m - 1 \) in \(L^2(\Omega) \), we have
\[
\frac{1}{2} \frac{d}{dt} \|V^k v_{2,2}\|^2 = e^{-\alpha t} \|V^k v_{2,2}\|^2 + (a(x)(-\Delta)^m v_{2,2}, (-\Delta)^k V_{2,2}) + e^{\alpha(t)}(a(x)(-\Delta)^m u_{n,2}, (-\Delta)^k V_{2,2}) \\
- e^{\alpha(t)}(u_{n,2}, (-\Delta)^k V_{2,2}) - (b(x)M(\|u\|^2))(-\Delta)^m u_{n,2}, (-\Delta)^k V_{2,2}) \\
((-I - P_n)g(x, u), (-\Delta)^k V_{2,2}) + (f(x, t), (-\Delta)^k V_{2,2}) + e^{\alpha(t)}(h, (-\Delta)^k V_{2,2}) \\
- w(t)(a(x)(-\Delta)^m h, (-\Delta)^k V_{2,2}).
\]

Then applying \(I - P_n \) to the first equation of (3.8), we obtain
\[
v_{2,2} = \frac{du_{n,2}}{dt} + e^{\alpha t}u_{n,2} - hw(t).
\]
Combining the processing method of Lemma 4.1, we have:
\[
\frac{d}{dt} \left[\| \nabla^k v_{n,t} \|^2 + \left(b_0 M_0(\| \nabla^m u \|) \right) - \varepsilon(\sigma_{n,t} + \| v \|^2) \right] + 2(\sigma_{n,t} + \| v \|^2) + 6 + \frac{\varepsilon^2}{4} a_0000(\| \nabla^k v_{n,t} \|^2 - 3\varepsilon \| v_{n,t} \|^2)
\]
\[
+ 2\varepsilon b_0 M_0(\| \nabla^m u \|)(\sigma_{n,t} + \| v \|^2) - \frac{3\varepsilon a_0000 b_0 M_0}{4} \| \nabla^k u_{n,t} \|^2
\]
\[
- 2\varepsilon^2(\sigma_{n,t} + \| v \|^2) + 6 \varepsilon \| v_{n,t} \|^2
\]
\[
\leq \sum_{i}^m (1 - \alpha_i) \left(\frac{a_00}{4(1 - \alpha_i)(m - k)} \right) \left(C_{n,t} \right) \frac{\varepsilon^2}{4} \| v_{n,t} \|^2
\]
\[
+ 2\varepsilon \sum_{i}^m (1 - \alpha_i) \left(\frac{a_00}{8\varepsilon (m - k)} \right) \left(C_{n,t} \right) \frac{\varepsilon^2}{4} \| v_{n,t} \|^2
\]
\[
+ 2(\varepsilon^2 a_00000 b_0 M_0) \sum_{i}^m (1 - \alpha_i) \left(\frac{a_00}{8\varepsilon (m - k)} \right) \left(C_{n,t} \right) \frac{\varepsilon^2}{4} \| v_{n,t} \|^2
\]
\[
+ 4\varepsilon a_00000 b_0 M_0(1 + \| \nabla^m u \|^2)^2 \| f(x, t) \|^2 + \frac{2\varepsilon}{a_0000} \| \nabla^k f(x, t) \|^2
\]
\[
+ 4\varepsilon^2(\sigma_{n,t} + \| v \|^2) \sum_{i}^m (C_{n,t}) \frac{\varepsilon^2}{4} \| v_{n,t} \|^2.
\]
Then there is a positive constant \(\sigma \) such that (4.73) can be reduced to:
\[
\frac{d}{dt} \left[\| \nabla^k v_{n,t} \|^2 + (b_0 M_0(\| \nabla^m u \|) - \varepsilon(\sigma_{n,t} + \| v \|^2)) \right] + \sigma(\| v \|^2 + (b_0 M_0(\| \nabla^m u \|) - \varepsilon(\sigma_{n,t} + \| v \|^2)) \right] + \frac{2\varepsilon}{a_0000} \| \nabla^k f(x, t) \|^2
\]
\[
\leq C_k(1 + |w(t)|^2) + \frac{2\varepsilon}{a_0000} \| \nabla^k f(x, t) \|^2.
\]
when \(k = m \), (4.74) also holds.

Integrating (4.74) over \((t - \tau, t)\) with \(t \geq 0 \), we get for all \(n \geq N_k \):
\[
\| \nabla^k v_{n,t} \|^2 + (b_0 M_0(\| \nabla^m u \|) - \varepsilon(\sigma_{n,t} + \| v \|^2)) \right] + \sigma(\| v \|^2 + (b_0 M_0(\| \nabla^m u \|) - \varepsilon(\sigma_{n,t} + \| v \|^2)) \right] + \frac{2\varepsilon}{a_0000} \| \nabla^k f(x, t) \|^2
\]
\[
\leq C_k(1 + |w(t)|^2) + \frac{2\varepsilon}{a_0000} \| \nabla^k f(x, t) \|^2.
\]
Repeating (4.75), we obtain for every \(t \in R^+ \), \(\tau \in R, \ w \in \Omega, n \geq N_k \):
\[
\| \nabla^k v_{n,t} \|^2 + (b_0 M_0(\| \nabla^m u \|) - \varepsilon(\sigma_{n,t} + \| v \|^2)) \right] + \sigma(\| v \|^2 + (b_0 M_0(\| \nabla^m u \|) - \varepsilon(\sigma_{n,t} + \| v \|^2)) \right] + \frac{2\varepsilon}{a_0000} \| \nabla^k f(x, t) \|^2
\]
\[
\times \times (a(x) + \nabla^m u_{n,t} + (\tau - \tau, \ w) \in \Omega, \ n \geq N_k \right)
\]
\[
\leq C_k(1 + |w(t)|^2) + \frac{2\varepsilon}{a_0000} \| \nabla^k f(x, t) \|^2.
\]
From (3.8), \(h \in V_{n,m} \), \(f(x, t) \) satisfies (4.1) Lemma 4.1 and \((u_{n,-1}) \in B_k(\tau - \tau, \ w) \) for \(t \rightarrow + \infty \):
\[
eq \varepsilon(\sigma_{n,t} + \| v \|^2) \right] + \frac{2\varepsilon}{a_0000} \| \nabla^k f(x, t) \|^2.
\]
Combining (4.66), (4.69), (4.70), (4.71), and Lemma 4.1, we can get the conclusion of Lemma 4.2.

Lemma 4.2 is proved.
5 The existence of the family of random attractors

In this section, we shall prove the existence of the family of random pullback attractors for system (3.8). From Lemma 4.1, we know that for P – a.e. $D_k = \{D_k(t, w) : t \in R, w \in \Omega_1\} \in \mathcal{D}_k$ and $w \in \Omega_1$, there exists $T_k = T_k(D_k, w)$ such that for all $t \geq T_k$

$$\|v(t, t - \theta, w, v_{-\theta})\|_{H_k}^2 + \|\nabla v(t, t - \theta, w, u_{-\theta})\|_{H_{m+1}}^2 \leq r_k(t, w). \quad (5.1)$$

Let

$$B_k(t, w) = \{(u, v) \in V_{m+1} \times V_k : \|v\|_{H_k}^2 + \|u\|_{H_{m+1}}^2 \leq r_k(t, w)\}. \quad (5.2)$$

Then, by (5.2), $B_k = \{B_k(t, w) : w \in \Omega_1\}$ are the closed absorption sets of Φ_k in X_k. We are now ready to prove the asymptotic compactness of Φ_k in X_k.

Lemma 5.1. Suppose M satisfies (M), $h(x) \in V_{m+1}(\Omega)$, (3.2)–(3.6) hold $f(x, t)$ satisfies, (F_i), then Φ_k is asymptotically compact in X_k, that is, for every $t \in R, w \in \Omega_1$, the sequence $\{\Phi_k(t, \tau \in R, \theta \in \omega, (u_{r, i}, v_{r, i}))\}$ has a convergent subsequence in X_k provided $t \to \infty$ and

$$(u_{r, i}, v_{r, i}) \in D_k(t - t_i \in \tau \in \theta \in \omega) ; D_k = \{D_k(t, w) : t \in R, w \in \Omega_1\} \in \mathcal{D}_k.$$

Proof. We first let $t_i \to \infty$, it follows from Lemma 4.1 that there exist $i = i(t, w, D_k) > 0$ such that for every $i \geq t_i$

$$\|v(t, t - ti, \theta \in \omega, v_{ti})\|_{H_k}^2 + \|u(t, t - ti, \theta \in \omega, u_{ti})\|_{H_{m+1}}^2 \leq r_k(t, w), \quad (5.3)$$

next by using Lemma 4.2 for $\forall t_k > 0$, there are $i_k = i_k(t_k \in \omega, w, B_k) \in N_k(t_k \in \omega, w, B_k) > 0$ such that for every $i_k \geq i_{k+1}$

$$\|(I - P_n)v(t, t - t_k, \theta \in \omega, v_{t_k})\|_{H_k}^2 + \|(I - P_n)u(t, t - t_k, \theta \in \omega, u_{t_k})\|_{H_{m+1}}^2 \leq t_k. \quad (5.4)$$

By using (5.3), we find that $\{P_{t_k}(u(t, t - t_k, w), v(t, t - t_k, w))\}$ is bounded in $P_{t_k}X_k$ and $P_{t_k}X_k$ is finite dimensional, which associates with (5.4) implies that $\{(u(t, t - t_k, w), v(t, t - t_k, w))\}$ is precompact in X_k.

Theorem 5.2. Suppose M satisfies (M), $h(x) \in V_{m+1}(\Omega)$, (3.2)–(3.6) hold $f(x, t)$ satisfies, (F_i), then the family of cocycles Φ_k generated by (3.8) has a family of pullback \mathcal{D}_k attractors $\{A_k\} = \{A_k(t, w) \in \mathcal{D}_k(k = 1, 2, \ldots, m)\}$ in X_k and can be expressed as follows:

$$A_k(t, w) = \bigcap_{t \geq 0 \in \tau} \Phi_k(t, t - t, \theta \in \omega, B_k(t - t, \theta \in \omega)) ; \tau \in R, \quad w \in \Omega_1.$$

Proof. From (5.2), Lemmas 5.1 and 2.10, the conclusion of Theorem 5.2 can be obtained.

Theorem 5.2 is proved. \qed

Note 5.3. Theorem 5.2 shows the family of cocycles Φ_k generated by (3.8) has a unique pullback attractor A_k, respectively, in the space $X_k(k = 0, 1, \ldots, m)$, which together form a family of pullback attractors $\{A_k\}$. At the same time, according to Lemma 4.1 and (5.2) and the tight embedding of $X_k \hookrightarrow X_0, k = 1, 2, \ldots, m$, get the corresponding a family of pullback attractors $\{A_k\}$, which is (X_k, X_0) the family of random weak attractors, which means that the family of cocycles Φ_k has uniformly asymptotically compact absorption sets $B_k(t, w) \in X_0, k = 1, 2, \ldots, m$, where $B_k(t, w)$ are the bounded sets in X_k, i.e., Φ_k are asymptotically compact in X_0.

Acknowledgements: The authors thank the referees for valuable comments and suggestions, which improved the presentation of this manuscript.

Funding information: This work was partially supported by the fundamental research fund of Yunnan Education Department (2020J0908) and the basic science (NATURAL SCIENCE) research project of colleges and universities in Jiangsu Province (21KJB110013).

Conflict of interest: The authors state no conflict of interest.

Data availability statement: No data, models, or code are generated or used during the study.

References

