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Abstract: In this article, we study two classes of Kirchhoff-type equations as follows:

—|a+ bleulzdx Au+ VOu = (I, * ulP)ulP2u + f(u), inR3,
[R3

€ H'(R%),

<

and

a+ bfquFdx Au+ VOoOu = (I = [ulP)ulP2u + mul-2u, in R3,
[R3
u € H(R3),

wherea > 0,b >0, € (0,3),3+a)/3<p<B+a),l>6,m>0,V:R>— R is a potential function and
I, is a Riesz potential whose order is a € (0, 3). Under some assumptions on V(x) and f(u), we can prove
that the equations have ground state solutions by variational methods.
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1 Introduction

In this article, we study the following two classes of Kirchhoff-type equations:

-la+ bIIVulzdx Au+ VOOu = (I * ulP)uP?u + fw), inR3,
[RB
u € H(R3),

1)
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and

—|a+ bleulzdx Au+ VOu = (I * [ulP)|ulP~2u + mu|2u, in R3,
|R3

u € H(R3),

2

wherea >0,b>0,a€(0,3),3+a)/3<p<B+a),l=6,m>0,I,is a Riesz potential whose order is
(3
F(%)H%Z"‘ Ixp-@

(V1) V e CY(R3(NL*®, and there exists a constant A € (0, a) such that

a € (0, 3). Here, I, = . Besides, V(x) : R®> — R is a potential function satisfying:

A
|(VV(X)9 X)l < M:

for all x € R3\{0},

(V2) there is a constant V., > 0 such that for all x € R3,

0 < V(x) < liminf V(y) = V, < +00,

[y|=+00

(V3) inf V() = Vo > 0.

Furthermore, we suppose that the function f € CI(R, R) satisfies:
(f1) there exists a constant C, > 0 and g € (2, 6) such that |[f(t)| < Co(1 + [¢]271), Vit e R,
(f2) f(t) =o(t)ast — 0O,

(f3) lim“Hm% = 00, Where F(t) = Iotf(s)ds,

(f4) % is increasing on (-oo, 0){ (0, +c0).

In the past decades, many scholars have studied the existence of nontrivial solutions for the Kirchhoff-type
problem:

—|a+ bleulzdx Au + V(u = g(x,u), inR3,
[R3
u € H(R3),

3

where a >0, b >0, V:R3 - R is a potential function and g € C(R?® x R, R). Problem (3) is a nonlocal
problem because of the presence of the term bIR3 |Vul?dx, which causes some mathematical difficulties, but

at the same time makes the research of this problem particularly interesting. Besides, this problem has an
interesting physical context. In fact, if we set V(x) = 0 and replace R? by a bounded domain Q ¢ R? in (3),
then we obtain the following Kirchhoff Dirichlet problem:

- a+bJ-|Vu|2dx Au=g(x,u), xeQ,
Q

u=0, x € 0Q).

It has relation to the stationary analogue of the equation:

L
pa2u_ &+£j %
2L
0

o

oul g | _,
ox

ot? h

which was proposed by G. Kirchhoff as an extension of classical D’Alemberts wave equations for free
vibration of elastic strings. Kirchhoff’s model considers the changes in length of the string, which were
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produced by transverse vibrations. Then ]. L. Lions finished the previous work. He introduced a functional
analysis approach. After that, more and more researchers have paid much attention to the problem (3).
But most of their results need to assume:

1. V verifies (V): inf z3V(x) := V, > 0 and for each M > 0.

meas{x € RN : V(x) < M} < +co0,
2. g satisfies classical Ambrosetti-Rabinowitz condition, i.e., (A — R) condition: there exists u > 2 such that
0 < uG(x, s) < sg(x, s)

for all s > 0.

In fact, (V) is sufficient to ensure that the embedding

U e H(R?) : IV(X)|u|2dx < +oob o LARY), 2<p<6
3

R

is compact.

Unfortunately, there still are very few results of existence of ground state solution to (3) without (A-R)
condition (see [1-3]).

In [3], Guo studied the following Kirchhoff-type problem:

—(a +b J Vup dx)Au F VOO = f(u), inR3. “
[R3

u € H(R3).

He proved the existence of positive ground states to (4), and in his paper, he did not use (A-R) type
condition. He defined a new manifold:

1 ! —
M = {u € HY(R3) : E(GD W), u) + P(u) = O},

which is named the Nehari-Pohozaev manifold. Here,

2

D) = lj[aqulz + Valldx + 2 IquFdx - I Fu)dx
2[R3 4 R? R®

and

2

P(u) = %I[aquF + 3V 2)dx + g Jqulzdx - 3IF(u)dx
R> R? R>

are the energy functional and Pohozaev identity for the “limit problem” of problem (4), respectively. He first
applied the result, which was obtained for the related “limit problem” of (4) to obtain a minimizer for
problem (4) on the Nehari-Pohozaev manifold.

We must point out that f e C! and the fourth assumption about f are very important in Guo [3].
Actually, only under aforementioned assumptions, M is a C! manifold.

Most remarkably, as early as 2006, Ruiz [4] first proposed the prototype of this Nehari-Pohozaev
manifold in his study of the Schrédinger-Poisson equation, which is a very great work.

On the other hand, when a =1, b = 0, f = 0, equation (1) becomes

—Au+ VoOu = (I * [ulP)|ulP2u. (5)

We usually call it nonlinear Choquard-type equation. Its physical background can be found in [5], and the
references therein. Besides, readers can see [6—13] for recent achievements.
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Inspired by the aforementioned works, especially by [3,13-15], we now research problem (3) with
Hartree-type nonlinearities g(x, u) = (I, * |ul?)|ul’~2u + f(u), which may be regarded as a Kirchhoff-type
perturbation to (5). As we all know, there are very few results to (3) with Hartree-type nonlinearities and
critical or supercritical growth.

The main outcomes of our investigation are as follows.

Theorem 1.1. If V satisfies (V1)-(V2), f € CY(R, R) verifies (f1)—(f 4), then problem (1) has a ground state solution.

Theorem 1.2. If V satisfies (V1)—-(V3), then there exists some mq > 0 such that form € (0, my], problem (2) has
a ground state solution.

For the convenience of expression, hereafter, we will use the following notations:
¢ X = H'(R3) is a space in which an equivalent norm is defined as follows:

1
2

Jul = j(aWuF + Vooudx |
|R3

L3(R3)(1 < s < 00) denotes the Lebesgue space in which the norm is defined as follows:
1/s
b = | [upax|
[R3

e For any u € H'(R3)\{0}, u, is denoted as follows:
0, t=0,
Ue = ﬁu(%), t> 0.

e Foranyx e R3andr>0,B.(x)={y e R3: |y - x| <r}.
C, Cy, G, ... denote positive constants, which are possibly different in different lines.

2 Preliminaries

Problem (1) has a variational structure, i.e., the critical points of the functional

2

I(u) = %I[aWuF + Veowldx + % I|Vu|2dx - ij([a o (Pl dx - IF(u)dx ©)
R? R? R?

IRB
are weak solutions of problem (1).
Lemma 2.1. Assume that (f1)-(f4) hold, then we have
1. foralle > 0 and q € (2, 6), there is a C; > O such that |f(t)| < g|t| + C|t]97},
2. for any s # 0, sf(s) > 2F(s) and F(s) > 0.

Proof. We could easily obtain the results by elementary calculation. O

Lemma 2.2. (Hardy-Littlewood-Sobolev inequality [16]). Let O <a <N, p,g>1 and 1<r<s< oo
be such that

1]
—_
+

=< |+
|
»n |-

< =
Q|-
==
z|=
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1. For any f € LP(RN) and g € L4(RY), one has

| j%dxdy < CON, &, Pl gl
RY RY

2. For any f € I'(RY), one has

< C(N, o, DIflrg»,-
LSRY)

1
H |.|N—£¥ * f

Lemma 2.3. (Brezis-Lieb lemma [17]) Let s € (1, 0o) and {w,} be a bounded sequence in L5(RYN). If w, — w
almost everywhere on RY, then for any q € [1, s],

tim [ 11wl ~ w, - wle — Jwifidx = 0 e
n—oo N
R

and

lm | w7 wy — |y — WPt (W, — W) — [W]2-lw]7dx = 0. 8)
n—oo IRN
Lemma 2.4. (Nonlocal Brezis lemma [6]) Let « € (O,N), N>3, p € [1

sequence in Lﬂﬁ(RN). If u, — u almost everywhere on RY, then

,%) and {u,} be a bounded

lim [ o # fonl? Yl dx j(la [ty — [Pty — ulPdx = I(Ia  ul?)lul? dx.
n—eo N [RN [RN

R

Lemma 2.5. [13] Leta € (O, N), N>3,p ¢ [1, %) and {u,} be a bounded sequence in L%([RN). If{u,} > u

almost everywhere on RV, then for any h € Lﬂﬁ(RN),

lim J(I“ * |Un|P)|un P2 uzhdx = I(Ia * |u|P)|ulP~2uhdx.
n—oo [RN IRN

Lemma 2.6. (Pohozaev identity [6,7,18,19]). Suppose V(x) satisfies (V1)-(V2) and let u € X be a weak
solution of Problem (1), then we have the following Pohozaev identity:

0= Py(u) = % fqulzdx N % IV(X)lude N % I(VV(X),X)lxlzdx
3 3 3
R , R R (9)
b ) 3+a
+ 5 [VulPdx | - Iy = [u|?)|ulPdx — 3 | F(w)dx.
p
R? R> R?

2

In particular, if V = V,, we have
2
a 2 3 2 b 2
0=P,(u) = — | |[VulPdx + = | Volul?dx + =| | [Vu|*dx
2 2 2 2 2 2

(10)
3

ta J(Ia ¢ PP dx - 3 _[F(u)dx.
2 R? R?
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3 Ground state solution for the “limit problem” of equation (1)
In this section, we will investigate the following limit problem that is associated with problem (1):

—(a +b fquP )Au + Voot = (I * |uP)ufP~u + f(u), inR3,

< (1)
u € HY(R3).
The asscoiated energy function is given by:
2
Lo(w) = 1I[a|Vu|2 + Vgldx + 2 Iqulzdx _ ij(la o P ulp dx - IF(u)dx. (12)
2 R? 4 R> P R> R?
We prove the following results.
Lemma 3.1. Let p € (”T“, 3+ a), then I, has no lower bounds.
Proof. For Yu € X\{0} and t > 0, we have
To(ue) = Io(Ntu(t™x))
2
2 4 4
_ar I|Vu|2dx L ijuzdx + b2 I|Vu|2dx
2 2 4
R> R? R?
tp+3+a
- I(Ia s Pl dx - 3 _[F(ﬁu)dx - -0
2 R> R>
ast — oo, since p + 3 + a > 4, and then we can obtain the conclusion. O
Next we define M, = {u € X\{0} : G,(u) = 0}, where
Goo) = 5 (L), 1) + Po)
2
=a I|Vu|2dx +2 IVoouzdx +b I|Vu|2dx (13)
R3 R3 R3
B2y ax - 3 [ Faodx - [ faouax = S
2p g, g, 2 e dt |
Remark 3.2. For t > 0, we set
2
2 4 4
V(6) = Lo(uy) = % leude + % IVmuzdx N % Jqulzdx
R’ R? R’ (14)

- zitww I(Ia ¢ Pl dx - 63 fF(ﬁu)dx.
p
R? R?

Lemma 3.3. Let ¢, ¢, and ¢ be constants, which are positive and u € X\{0}. Then, the function

nt) = at? + ot* — cstP+3+0 - t3IF(\/?u)dx fort=0
IR3

has only one positive critical point, which corresponds to its maximal value.

Proof. One can obtain the result by elementary calculation. O
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Lemma 3.4. For any u € X\{0}, there exists only one to > O such that u,, € M, and I,(us,) = maXesoleo(Ur).

Proof. I,,(u;) has the form of the function n(t) defined earlier. Since by Lemma 3.3, n(¢t) has only one critical
point ¢y > 0, which corresponds to its maximal value. Thus, n(ty) = max.on(t) and n'(to) = 0. It follows that
Goo(u,) = ton'(to) = 0. This implies uy, € M, and I,(ug,) = maxesoloo(Us). O

Lemma 3.5. The functional I, possesses the mountain-pass geometry, i.e.,
(1) there exists p, 6 > 0 such that I, > 8 for all |u| = p;
(2) there exists e € H'(R?) such that |le| > p and I,(e) < O.

Proof. (1) By Lemmas 2.1(1) and 2.2, we have

Io@) 2 allul’ - cllul® - Cilul.

Thus, there exists p, § > 0 such that I, > 6 for all |u| = p > O small enough.
(2) For any u € X\{0}, by the definition of I,(u;), we see I,(u;) < O for t > O large. Note that

lluell? = atzj [VulPdx + tl‘j Vo u2dx.
R? R3

Taking e = u,, with ¢, > 0 large, then we have |le| > p and I(e) < O. O

Now we can define the mountain-pass level of I:

Coo = inf max I, (y(t)) > 0,
yel'te[0,1]

where T = {y € C([0, 1], X) : y(0) = 0, I,(y(1)) < O}.
Let

My = inf I (w),
ueMey
then for any u € M,,, we have

Lo(u) = Lo(u) — %Goo(u) > %I|Vu|2dx > 0.
[R3

Thus, m, is well defined. In addition, by the similar argument as Chapter 4 [19], we have the following
property:

Co = iInf maxl,(u;) = my = inf I (u).
ueX\{0} t>0 ue My

Lemma 3.6. Assume that (f1)-(f4) hold, then m, is obtained.
Proof. Let {u,} ¢ M, be such that I.,(u,) — m. Since G,,(u,) = 0, we have:
1+ Moo > Loo(Un) = Ioo(un) — % oo(Un)

_a 2 1 _
-2 [|Vun| dx+ 2 L[f(un>un 2F (uy)]dx
R R

L p-1l+a I([a % [ulP)ulP dx
8p &

a
> " leunlzdx
|R3
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for n large enough. Therefore, {|Vu,|3} is bounded. So there exists A > 0 such that I[Rs'V“anX — A.

We claim that {|uy[3} is also bounded. By Lemmas 2.1(1) and 2.2(1), the definition of G.,(u,) and Sobolev
inequality, we have

2 jvoou,fdx - % j[éF(uadx + FUunldx + ’”2—3*“ faa i [utal?Ye]? dx
p
[R3

R> R3

2

-a Iqunlzdx -b Iqun|2dx
R? R>

1 +3+a
< j[enun)  fuulde + 2228 j(Ia i gl 1ty P dx
[R3 p [R3
< el + Coluald + Clunl?,

3+a

< equ,,I% + Cswunlg + C|Vuy %p’

which indicates {|u,[3} is bounded. Then let § = lim,_, supys[Rs.[B( )|un|2dx. Next we prove § > 0.1f 6 = 0,
1y

then by Lions’ concentration compactness principle [19], we have u, — 0 in LI(R?) for g € (2, 6). From

Lemma 2.2, we can obtain that

| e bl ax < s, — o,

R3 3+a

since 2 < ;—pa < 6. Together with G, (u,) = 0, we have u, — 0 in X. This conflicts with the fact that c,, > 0.
So 6 > 0 and there exists {y,} ¢ R such that jB( )|un|2dx > g > 0. We set v4(x) = up(x + y,), then
1

ol = bl [ Pax> 2
B,(0)
and
Io(vp) = My,  Geo(vy) = 0.
Therefore, there exists v € X\{0} such that

Vp — Vv inX,
Vo = v in L{(R3), Vse[l,6)

V. —» Vv a.e. on R3

and JR3|anlzdx — A. Then, we set

a + bA
2

L) = leulzdx + lIVOOuzdx - ij(la o JulP)Jul? dx - JF(u)dx.
R3 2 R3 2p [R3

[R3
Since I,(v,) — 0 and v, — v in X, we have I ,(v) = 0. Besides v satisfied the following Pohozaev
identity:

a + bA

Pio = I|Vu|2dx+ 2J‘Voo|u|2dx— 3
R> Z[R3

ta J(Ia « ul)ulPdx — BJF(u)dx -o.
2 2p
R3 R’

Suppose that j |[Vv[2dx < A, then we have
3

A UORY
- 2

0 + Pa,oo(V) > Gyo(Vv).

Thus, by Lemma 3.4, there exists ¢, € (0, 1) such that v;, € M,. Hence, we have
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Coo < Ioo(vto)

= 1o (¥%) = 5 Go()

at0 pra-1

j Vvdx + © j[f(f VIV - 2P(JEV)ldx + o3 j(l « [v]P)IvIP dx

2 I|Vv|2dx L J.[f(v)v — 2F()dx + % I(I « VP)IvIPdx
|R3
< lim & f Vv 2dx + = j Lf Vi — 2F(v)ldx + % ju o [valP)Val? dx

n—-oo

|R3

= lim [ (V) — (Vn)] Meo-

n—oo

This is a contradiction. Consequently, we obtain I[R3|Vv|2dx =A= limnﬁmIRJanFdx. So G,(v) =0
I,(v) = my,. This completes the proof. O

Lemma 3.7. If m, is obtained at some il € M, then il is a critical point of I,(u).

Proof. It is obvious that ii # O since ii € M,. Then we claim that for every fixed v € H((R3), there exists
€ > 0 such that @i + sv # O for all s € (-¢, €). In fact, by contradiction, there exists a sequence {s;}{>; such
that lim;_,..,S; = 0 and @i + s;v = 0 a.e. on R3. Lettingi — +00, we have ii = 0 a.e. on R3, which is a contra-
diction with @i # 0. Then by Lemma 3.3, there exists only one ¢, > 0 such that (fi + sv)ys) € M
Now consider the function ®(t, s) = G,,((ii + sv);) defined for (¢, s) € (0, +c0) x (-¢, €). Since 61 € M,
one has @(1, 0) = G,(ii) = 0. Moreover, @ is a C! function and

ad(t, s)
o li9-1,0)

< 0.

By the implicit function theorem, the function t(s) is C! and being t(0) = 1, then one can know t(s) # O near
0. By letting y(s) = I,(({l + sv)¢s)), one has y is differentiable for all small s and attains its minimum at
s = 0. Therefore, we can deduce

0=y'(0)
_ dIo((@ + sV)is))
ds -0
_ Al (T + sv)y) ﬂ N Al (T + sv)y)
ot (t.9)=1,0) dS li=o 0s (t.5)=(1,0)

= Goo('(0) + (I (D), v) = (L (), V).

Since v € X is arbitrary, we deduce that I’ (&i) = O. O
Then by Lemmas 3.6 and 3.7, we can have the following result.

Theorem 3.8. Under assumptions (f1)-(f4), Problem (11) has a ground state solution.

4 Ground state solution for problem (1)

Proposition 4.1. (See [20]) Let (X, |-||) be a Banach space and T ¢ R* be an interval. ®,(u) is a family of C!
functions on X of the following form:

@, (u) = A(u) - 1B(u), V1 € T,
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with B(u) > 0, Yu € X and either A(u) — +oo or B(u) — +co as ||[u|| — oo. Suppose that there are two points
Vi, V2 € X such that

¢ = inf max @, (y(t)) > max{®,;(v), D:(v,)}, VT € T,
yel'te[0,1]

where T = {y € C([0, 1], X) : y(0) = v1, y(1) = v2}, then for almost every Tt € T, there is a bounded (PS).,
sequence in X.

Set T = [6, 1], where § > 0. We investigate a family of functionals on X with the following form:

2

Iy (w) =% I[a|Vu|2 + V(x)u?]dx + % I|Vu|2dx

R> R?

i I(Ia o Pl dx + IF(u)dx . vr €[5, 1].
2 R? R?

Then we can set Iy (1) = A(u) — TB(u). Here,
2
AQ) = %I[aqulz + VOl + % Jqulzdx ~» +00,
R> R>

as lull| —» +oo, and

B(u) = ij([a « ul?)ulPdx + '[F(u)dx > 0.
R? R?

Lemma 4.2. Assume (V2) holds, then we have
1. there exists a v € X\{0} such that Iy .(v) < O for all T € [§, 1],
2. Cr = il;llfmaxte[o,l]lv,r(ya)) > maX{IV,T(O)’ IV,T(V)} fOT‘ all 7 € [5, 1],

where

I'={y e C([0,1], X) : y(0) = 0, y(1) = v}.

Proof. (1) Fix u € X\{0}, then for V1 € [§, 1] and t > 0, we have

at? Lt L. bt ,
Iv,T(ut) < IVmﬁ(ut) = 7 |Vu| dx + ? Voou dx + T |Vu| dx
[R3

R? R>

tp+3+a

I(Ia # ulP)|ulPdx + £3 IF(ﬁu)dx - —00
D

R3 R3

-6

2

ast — +oo. Just by taking v = u; with t large, one can have
Iy (uy) < Iy s(us) < O.
(2) By Lemmas 2.1(1) and 2.2, we have
Iy () = cllul® - cllul? — Cellull?.
Since p > 1, Iy .(u) has a strictly local minima at O, i.e., there exists r > 0 such that

b= Iinf Iy (w) > 0 = Iy -(0) > Iy (v),

full=r

and hence taking u; = v, we obtain ¢; > max{ly -(0), Iy :(us)} = 0. a
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Lemma 4.3. (See [20]) Assume the conditions of Proposition 4.1 hold, the map T — c; is nonincreasing and
left continuous.

By Theorem 3.8, we conclude that for V 7 € [§, 1], the “limit problem” of the following type
= (a+ b [ 1Vup)ou+ Vi = Tl + 2+ @), in R,

|R3
u € H(R3)

(15)

has a ground state solution u, € Hi(R?), i.e., forV 7 € [, 1], there existsu,; € M, = {u € X\{0} : G, -(w) = 0}
such that I{,m,T(uT) = 0 and Iy .(u;) = my = inf,ep Iy, (w). Here,

Iy (W) =% J-[a|Vu|2 + Vu?]dx + % I|Vu|2dx
3

|R3

1z I(Ia o JufP)lulPdx + jF(u)dx
p 3 3
R R

2

Goo,r(W) = a leulzdx +2 IVmuzdx + b Iqulzdx
3 3 3

p+3+a

fa ¢ Pl dx - 3t IF(u)dx I jf(u)udx

Lemma 4.4. Suppose that (V1)-(V2) hold, and V(x) + V,, then c; < m; for V1 € [8, 1].

Proof. Let u, be the minimizer of m,. By Lemma 4.2, there exists f € (0, ty) such that

Cr = 1nf maxIV y@®) < max Iy T(\/_u ( )) Iy T(x/_uf( ~ ))

te[0,1]

< Ivm,r(«/? uf(%)) < max Iy, T(f ur(:)) = Iy, «(ur) = my. O

t>0

Next we provide the following global compactness lemma.

Lemma 4.5. (See [3,13]) Suppose that (V1)-(V2) and (f1)-(f4) hold. Forc > O and T € [6, 1], let {u,} c X be
a bounded (PS). sequence for Iy . Then there exists a uy € X and A € R such that ]{,’T(uo) = 0. Here,

a + bA?

Jo. () = Iaqulzdx ; %IV(x)uzdx 1 ijaa o ulP)lulP dx + jF(u)dx .

R> R? R

Moreover, either
1. u, — ug strongly in H(R3), or
2. there exists a finite(possibly empty) set uy, W, ..., ux C X of nontrivial solutions of

—(a + bA)Au + Voou = 7[, * [ulP)ulP~?u + f(w)],
andy! cR3%i=1,2,3,..., k(k € N*), such that

[yl = 00, |y, —¥)| = o00(i#1), asn — oo;
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b <
¢+ == Jvx(uo) + Y Ju,c(up);
i=1

k
Un = Uo = ) (=Yl

i=1

k

2 2

A = [Vuel3 + Y IVuil3,
i=1

where

a + bA?
2

Jv,-(W) = Ia|Vu|2dx + lJ-Voouzdx -7 LJ‘(I,X * |ulP)|ulPdx + IF(u)dx .
R> 2 R> » R’ R3

Lemma 4.6. (See [3,13]) Suppose that (V1)-(V2) and (f1)-(f4) hold. For T € [6, 1], let {u,} ¢ X be a bounded
(PS)., sequence for Iy ;. Then there exists a nontrivial u, € X such that u, — u, strongly in X.

Now, we can prove the main theorem.

Proof of Theorem 1.1. In the view of Proposition 4.1 and Lemma 4.2, we see for a.e.t € [, 1], there exists
a bounded sequence {u,} ¢ X such that Iy (u,) — ¢, I{,’T(u,,) — 0. By Lemma 4.6, Iy has a nontrivial
critical point u; € X and Iy (u;) = ¢; for a.e. T € [§, 1]. Next, we choose an arbitrary sequence {z;} ¢ [6, 1]
with 5, — 1, then we obtain a sequence {u,,} ¢ X such that I, ; (u5,) = 0 and Iy, ,(us,) = Cy,. In the following,
we show that {u. } is bounded in X. By (V1) and Hardy inequality, using the similar argument in Lemma 3.5,
we can derive that both |Vu, |, and |u, |, are bounded. Thus, {u.} is bounded in X.

On the other hand, since 7, — 1", by Lemma 4.3, we have

lim I(uy,) = lim Jy 1(us,)
n—

n—oo [e¢]

n

= lim Iy (uz,) + (G- 1) % I(Ia [ |P )l |7 dx + jF(uTn)dx
R® R’

=lim ¢, =¢q

n—oo

and

nlil'{)lo <I’(u‘r,,)’ (P> = nlirgo <I{/,1(uTn)’ (p>

= 1im [ By (ue)s ) + = D] [ (hs ol g P2y + (s )px
R? R?

= 0.
That is {u;} is a bounded (PS), sequence for I. Again by Lemma 4.6, there exists uy € X such that
I(ug) = g, I'(ug) = 0, which means ug is a nontrivial solution of Problem (1).
Finally, we prove the existence of ground state solution. Set m = infsI(u), where S = {u € X\{0} : I'(u) = O}.
Now we show 0 < m < co. Since up € S, we seem < ¢ < co. For any u € S, we have

0 =(I'(w), u)
2

—a Iqulzdx N jV(x)uzdx +b Jqulzdx _ J(Ia o [ulP)lulP dx — If(u)udx
R> R? R? R> R>

> allul® - cul? - Collul.
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This indicates that |u| > 6 for some § > 0. On the other hand, by the Pohozaev identity, i.e., Py(u) = O
Then by (V1) and Hardy’s inequality, we obtain:
1
I(w)=I(u) - g[(l’(u), u) + 2Py(u)]

:% leulzdx _ é I(VV(X),x)uzdx
R? R?

p*“ ja*WPMWM+—jwwynﬂmm

. f|Vu|2dx _1 I(VV(X),x)uzdx

2
> = j|Vu|2 — | —dx
16 G

>4 fqu|2dx - = I|Vu|2dx

4 4

3 3
_a-A Iqulzdx.
3

This implies m > 0. In the following, let us rule out m = 0. If m = 0, then there exists minimizing sequence
{uy} ¢ S such that I(u,) — 0, which implies hm,Hoo'[ |Vu,|?dx = 0. Since {I'(uy), u,) = 0, we can infer
11m,H00f |u,|2dx = 0. Therefore, lim,,_,|lus> = 0, which contradicts to |lu,|| > 8. This proves our claim.

Then let {u,} ¢ S be a minimizing sequence such that I'(u,) = 0 and I(u,) — m. By similar argument as
mentioned earlier, one can conclude that {u,} is bounded. Again by Lemma 4.6, there exists a u € X such
that u, — u strongly in X. Thus, I'(u) = 0, I(u) = m. This implies u is a ground state solution for Problem
(1). Then we finish the proof. O

5 Ground state solution for problem (2)

As we all know, a weak solution of Problem (2) is a critical point of the following functional:
2
Jn(u) = 1 J-[a|Vu|2 + VOOu?ldx + — fquFdx
2 R3 R3
——ja*wmww——jwm
[R3

But obviously we cannot apply variational methods directly because that the functional J, is not well
defined when [ > 6. To solve this difficulty, we define the following function:

|e[-2¢ if |t <M,
P =9 s .
MEaee-2¢ i |t > M.

where M > 0. Then ¢ € C(R, R) and |@(t)| < M'-9|t|9-" for all t € R. Thus, me(t)(m > 0) verifies the condi-
tions (f1)-(f4). By Theorem 1.1, we know the equation:

—a+ bJ‘|Vu|2 Au + VOOu = (I * [ulP)ulP~>u + me(t), in R3 (16)

R3

has a ground state solution uy,.
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Let
2

7 _1 2 2 b 2 _ 1 " _
Ful) = ZL[“'V”' + VOOowldx + £|Vu| ax| -5 j U * lulP)lulPdx m[@(u)dx,
R

t ~ ~
where ®(t) = .[O(p(s)ds. As a consequence, J,(Uy) = ¢y, and J'p,(uy,) = 0. By characterization of minimax
level, we can derive that

Cm = inf maX]m(Y(t))

yelute[0,1]
where
T = fy € C([0, 11, X) : y(0) = 0, Ju(y(D) < O}.
Next, set
2
1 = - [ lalvuP + voowld + % [ vupax | - % | e wpypax - @,
and
c= lyrelgtg[lgid (),
where

I'={y e C(0,1],X):y(0) =0, J(y()) < 0}.

Then obviously we have T ¢ [, and ¢, < c.
Next we only need to prove the following lemmas.

4cm

Lemma 5.1. The solution u,, satisfies |Vup|3 <
on m such that |Vuy|} < A

, and there exists a constant A* > 0, which is independent

Proof. By Pohozaev identity, (V1) and Hardy inequality, we have
- 1. =
Cm= ]m(um) - g[(]r:z(um): um) + zpv(um)]
= % IqumFdx - % I(VV(X), X)uidx
3 3

,pra-1

= I(Ia Tt e + j[umgo(um) ~ 2D(uy)]dx

R3 R3

2% IqumFdx - % I(VV(X), X)uidx

A [ up

>— Vu,|dx - —
f|um| |

>— | |[Vu 2dx——J‘Vu 2dx
4j| e
R? R?

-2 [(vunpa,
3
which implies |Vup,|3 < al'f’fq S_—=4>0 This completes the proof. O

By some parts of the ideas of the proof, which comes from [14,15], we can obtain the following lemma.

Lemma 5.2. There exist two constants B, D > 0, which is independent on m such that ||[up|;~> < B + m)P.
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Proof. Set I > 2,r > 0 and ﬁ,{, = b(up,), where b : R — R is a smooth function, which satisfies b(s) = s for
Is| <I -1, b(-s) = -b(s); b'(s) = 0 for s > I and b'(s) is decreasing in [I - 1, I']. This implies that

ar{l = Up, for |uy,| <I-1,

[Gl] = |b(un)| < [uml,  for I—1< |upy| <1,
ikl = G > 0, for |up| > 1,
where I - 1 < (; < I. Moreover, one can easily have
sb'(s
= b(g))
Let ¥ = up|iiL . Then i € X, if one takes  as the test function, one can have

<1, Vs#0.

I(Ia # U |P) U P2 Unpdx + m I‘P(Um)lp
R’ R>

17)
- a IVumV¢dX b I Vit 2dx IVumV¢dX + f VOOUpbdx.
R> R? R> R>

Note that

jVu,,Nl/)dx > I A + DAL [Vug2dx + j G5 Vit 2 dx
R> |um|<I-1 Jum|=I
+ j HEEP + 2B (m)b’ )| =2 1| Vit |? dx
I-1<|um|<I
> [l vunPax s [ ane v ax
|um|<I-1 |um|=I
+ j UEEP + 2B’ )| =2 1| Vit |? dx
I-1<|up|<I
1

s | @b iPac [ vy

lum|<I-1 |lum|=I
+ (LR + 2ru2(B )@ 5 P 21| Vit 2 dx

I-1<|um|<I

! j IV [t (i P + j IV (i P dx

>—
1+71)?
[uml<I-1 [uml>I

1 ~ I r r 2 ~ 12—
+ u + 2ru(b'(u 2 u 2r-2 Vu ZdX
j a r)zl rnI (1 T)z m( (Um)) | ml | ml

I-1<|um|<I

! j IV [t TP + j IV [t P dx

T @+7)?
[uml<I-1 [uml>I

1 2r 2 2
* j [(1 + r)zb W) Vikml” + @+r)?

u,in'(um)F]dx

I-1<|um|<I
> 1 j IV [t (i TP + j IV [t P dx
1+71)?

lum|<I-1 lum|=I

j B () IVt P + UZ|VH ()P ]clx
I-1<|up|<I
j IV [t Pdx + j IV (i P dx
lum|<I-1 lum|=I
[ Wium@ripex

I-1<|upm|<I

| 1vlunaty1pPax.
[R3

26,
i
1+7r)?

1
>—
1+71)?

G
i
1+7r)?

G
1+71)?

>



766 —— LiZhou and Chuanxi Zhu DE GRUYTER

Hence, by (17), we obtain

[ e anl? b 18 x4 m [ it x> ( G X | 19ty Pax + [ VOOlunP 14 ax.
3 3 [R3 3

For any ¢ > 0, by Lemma 5.1, properties of i, and ¢, there exists C, > 0 such that

[ e anl 187 < 1 [ Bl i < Blun®, < €IV < M,

[R3 [R3 3+a
where I, b, and M are positive constants, and
lp(t)] < elt] + CoJtP? !

forallt € R, where 2* = ﬂ_ if N> 3and 2* = oo if N = 1 or 2. Thus, for fixed m > 0 and small € > 0, we have

(1 s jw (LY 1P

IN

j(Ia b [t P e ? T2 dx + jgo(um)umm,ﬁ,ﬁfdx - jV<x)|um|2 L dx
3 3 3

IN

M+ j Voltt 2[4 dx + mC ju,i*m,ﬁvfdx - jwuum,m”dx
3 3 3

7N

1+ mC fu,ﬁ*m,{,ﬁrdx

Notice that

2

lj‘lumlz*lﬁrﬁlzr‘zz*dx < b II [Un(@m) 1P dx.
[R3

2
1 +r) 1 +r)
Consequently,

2
*

. PX .
flum|2 [l zdx| <@+ m)C@+ 1)2J-u,f,|ﬁ,f,|2’dx

R> R>

* k %
Taker, > O and 1, = ro(%) =T 2? Then

1 1
2r 2ri_q

j|um|2*|a,{,|2fkdx <[VT+ mJC(s + D j|u,,,|2 |a} e dx
[R3

1
k-1 2ro

< [[INTF mCa + ) j|um|2"|a,ﬁ|2'odx

i=0
(18)

k-1 %
-Tla +m)an[f i+ DI [ unl? 1} Poax
i=0 R3

k-1 o
1+m)5nexp{211n[ﬁ(n+1>]} [ un a5 ax]|

i—ofi

I
T
-
—~

i=0 R3

Notice that
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N-2
N

_— N o
j ul? G2 Wozdx | <Clro + 1)2 j Juml? 1420 dx
R3 R3

2" ﬁr{1|2r0dx

<C(ry + 1)? _[ {7
lum()|<p

=

. . LN
w0+ [ b || [l 1P 2
|R3

[um(xX)|2p

Take p > 0 be such that

%
cro+ 1 [ x| <2
[um()|2p
Then
N-2
N
[k ah wrax|  <cwor1? [ P lahpeax < c.
R’ lum()|<p
Set
k-1 k1
di = [TIVC @+ DIt = exp{Z;lnNE(ri ' 1)]}
i=0 i=o Tt
and

Hate myt =t » ()]
e = [ [+ myzm = @+ m)® el A2/,

i=0

— 767

Thendy — dy, ask — oo and e — ey, = (1 + m)(z*—zz)zro as k — oo. By (18) and Lemma 5.1, we have

1
2rg

i o d

L
2ry

2|y Predx | < diex jlum z
[R3

Jlum
[R3

- 1
N-2Taro

=

o LN
j|um|2 [P v dx
3

R

< diey j [um[? dx
IR3

1
Nrg

< Cdyey Ilum|2*dx < Cdey.
R3

From (19), by Fatou Lemma with T — +o00, one has

25421y

|um Z*ir2krk < Cdyey.
Consequence, let k — oo, we obtain
»
lumllz < Cdoloo = Cdoo(1 + m)@-vzo == B(1 + m)P,

where B > 0 and D > 0. Now we complete the proof.

19)
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Proof of Theorem 1.2. By Lemma 5.2, for large M > 0, we can choose small mg > 0 such that |Ju,|;~ <
B(1 + m)? < M for all m € (0, mg]. Consequently, u,, is a ground state solution of equation (2) with
m € (0, mp]. Finally, we finish the proof. O
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