Research Article

Xinhong Zhang*, Xin Song, and Ruijuan Li

Total Roman domination on the digraphs

Abstract: Let $D = (V, A)$ be a simple digraph with vertex set V, arc set A, and no isolated vertex. A total Roman dominating function (TRDF) of D is a function $h : V \rightarrow \{0, 1, 2\}$, which satisfies that each vertex $x \in V$ with $h(x) = 0$ has an in-neighbour $y \in V$ with $h(y) = 2$, and that the subdigraph of D induced by the set $\{x \in V : h(x) \geq 1\}$ has no isolated vertex. The weight of a TRDF h is $\omega(h) = \sum_{v \in V} h(v)$. The total Roman domination number $\gamma_{tR}(D)$ of D is the minimum weight of all TRDFs of D. The concept of TRDF on a graph G was introduced by Liu and Chang [Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013), no. 3, 608–619]. In 2019, Hao et al. [Total Roman domination in digraphs, Quaest. Math. 44 (2021), no. 3, 351–368] generalized the concept to digraph and characterized the digraphs of order $n \geq 3$ with $\gamma_{tR}(D) = 2$ and the digraphs of order $n \geq 3$ with $\gamma_{tR}(D) = 3$. In this article, we completely characterize the digraphs of order $n \geq k$ with $\gamma_{tR}(D) = k$ for all integers $k \geq 4$, which generalizes the results mentioned above.

Keywords: total Roman dominating function, total Roman domination number, digraph

MSC 2020: 05C20, 05C69

1 Introduction

In recent years, domination theory in digraphs has inspired widespread interest. Some variations have fallen within the scope of research (see [1–9]).

For the notation and terminology in this article, see [10]. Let $D = (V, A)$ be a simple digraph with vertex set V and arc set A. In this article, if not otherwise specified, we assume that digraph D has no isolated vertex. Let $x \in V$. The out-neighbourhood, $N^+(x)$, of x is $\{y : (x, y) \in A\}$, and $N^-[x] = N^-(x) \cup \{x\}$ is called the closed out-neighbourhood. Similarly, the in-neighbourhood $N^-(x)$ and the closed in-neighbourhood $N_+^-[x]$ of x can be defined. Furthermore, the set $N(x) = N^+(x) \cup N^-(x)$ is called the neighbourhood of x. We call the vertices in $N(x)$ the neighbours of x. For a vertex subset $W \subseteq V$, the subdigraph induced by W is denoted by $D[W]$.

A total Roman dominating function (TRDF) in a digraph D is a function $h : V \rightarrow \{0, 1, 2\}$ that satisfies the following conditions:

(a) each vertex $x \in V$ with $h(x) = 0$ has an in-neighbour $y \in V$ with $h(y) = 2$;
(b) the subdigraph of D induced by the set $\{x \in V : h(x) \geq 1\}$ has no isolated vertex.

For the sake of simplicity, let $V_i = \{x \in V : h(x) = i\}$ for $i = 0, 1, 2$ and we also write $h = (V_0, V_1, V_2)$. For a vertex subset $W \subseteq V$, we define $h(W) = \sum_{v \in W} h(v)$ and $\omega(h) = h(V)$. The total Roman domination number of D is

$$\gamma_{tR}(D) = \min\{\omega(h) : h \text{ is a TRDF of } D\}.$$
A TRDF h is called a $y_{tr}(D)$-function if $\omega(h) = y_{tr}(D)$. For more results about this, see [11–15].

In 2019, Hao et al. [15] characterized the digraphs of order $n \geq 2$ with $y_{tr}(D) = 2$ and the digraphs of order $n \geq 3$ with $y_{tr}(D) = 3$. In this article, we generalize the results mentioned above to all positive integers $k \geq 4$ and characterize the digraphs of order $n \geq k$ with $y_{tr}(D) = k$. In Section 2, we discuss the case $k = 4$, and in Section 3, we proceed for $k \geq 5$.

2 The digraphs of order $n \geq 4$ with $y_{tr}(D) = 4$

In this section, we characterize the digraphs D of order $n \geq 4$ with $y_{tr}(D) = 4$. To show the main result, we need to use the following propositions.

Proposition 2.1. [15] For any digraph D of order $n \geq 2$ with no isolated vertex, $y_{tr}(D) = 2$ if and only if $n = 2$.

Proposition 2.2. [15] For any digraph D of order $n \geq 3$ with no isolated vertex, $y_{tr}(D) = 3$ if and only if one of the following hold:

1. $n = 3$;
2. $n \geq 4$ and there exist two vertices u and v of D such that $V(D) \setminus [u, v] \subseteq N^*(v)$ and $D([u, v])$ is connected in D.

Theorem 2.3. Let $D = (V, A)$ be a digraph of order $n \geq 4$ with no isolated vertex. Then, $y_{tr}(D) = 4$ if and only if one of the following is true:

1. $n = 4$ and D does not contain a vertex subset X such that $|X| = 2, V \setminus X \subseteq N^*(x)$ for a vertex $x \in X$, and $D[X]$ has no isolated vertex;
2. $n \geq 5$, $\Delta(D) = n - 2$,

 (2.a) $D[V \setminus N^*(v)]$ is not connected for any vertex v with maximum out-degree of D, and

 (2.b) D contains a vertex subset X such that $|X| = 3, V \setminus X \subseteq N^*(x)$ for a vertex $x \in X$, and $D[X]$ has no isolated vertex;
3. $n \geq 5$, $\Delta'(D) \leq n - 3$,

 (3.a) D contains a vertex subset X such that $|X| = 3, V \setminus X \subseteq N^*(x)$ for a vertex $x \in X$, and $D[X]$ has no isolated vertex, or

 (3.b) D contains a vertex subset X such that $|X| = 2, V \setminus X \subseteq N^*(X)$, and $D[X]$ has no isolated vertex.

Proof. (\Rightarrow) Assume that $y_{tr}(D) = 4$. Let $h = (V_0, V_1, V_2)$ be a $y_{tr}(D)$-function.

We claim that $\Delta'(D) \leq n - 2$. Suppose not. Then, $\Delta'(D) = n - 1$, and there is a vertex $v \in V$ with $d^+(v) = n - 1$. Let u be an out-neighbour of v. Define a function $g_0 : V \rightarrow \{0, 1, 2\}$ such that $g_0(v) = 2$, $g_0(u) = 1$, and $g_0(w) = 0$ otherwise. This results in a TRDF with weight $\omega(g_0) = 3 < 4 = y_{tr}(D)$, a contradiction. Hence, $\Delta'(D) \leq n - 2$.

Since $y_{tr}(D) = |V_0| + 2|V_1| = 4$ and $\Delta'(D) \leq n - 2$, we distinguish two cases: either $\Delta'(D) = n - 2$ or $\Delta'(D) \leq n - 3$.

Case 1: $\Delta'(D) = n - 2$.

Subcase 1.1: $|V_1| = 4$ and $|V_0| = 0$.

Since $|V_0| = 0$, we have $|V_1| = 0$, and then $|V| = |V_1| = 4$. For $n = 4$, it is easy to see that the condition 2.3(1) is true by Proposition 2.2 (2).

Subcase 1.2: $|V_1| = 2$ and $|V_0| = 1$.

First, we show that the condition (2.a) is true. Suppose to the contrary that there is a vertex $v \in V$ with $d^+(v) = \Delta'(D)$ such that $D[V \setminus N^*(v)]$ is connected. Then, $(u, v) \in A$ for the vertex $u \in V \setminus N^*(v)$, as shown in Figure 1(1). Define a function $g_1 : V \rightarrow \{0, 1, 2\}$ such that $g_1(v) = 2$, $g_1(u) = 1$ and $g_1(x) = 0$ for each vertex $x \in N^*(v)$. Then g_1 is a TRDF with weight $\omega(g_1) = 3 < 4 = y_{tr}(D)$, a contradiction. Therefore, the condition (2.a) holds.
Furthermore, let $V_0 = \{v_0\}$ and $X = V_1 \cup V_2$. Then, we have $V \setminus X = V_0 \subseteq N^r(v_0)$ and $D[X]$ has no isolated vertex by the definition of TRDF. This implies that the condition (2.b) holds, see Figure 1(2).

Subcase 1.3: $|V| = 0$ and $|V_0| = 2$.

Let $V_0 = \{v_0, v_1\}$, $V_1 = \emptyset$. Since h is a $\gamma_{dtR}(D)$-function, there exists a vertex with the maximum out-degree $\Delta^r(D)$ in V_2. Without loss of generality, assume that $d(v_1) = \Delta^r(D)$.

If $v_1 \notin N^r(v_0)$ (as shown in Figure 1(3)), then define a function $g_1 : V \to \{0, 1, 2\}$ such that $g_1(v_0) = 2$, $g_1(v_1) = 1$, and $g_2(x) = 0$ otherwise. Then, g_1 is a TRDF with weight $\omega(g_1) = 3 < 4 = \gamma_{dtR}(D)$, a contradiction. Thus, $v_1 \in N^r(v_0)$. Let $V_2 = V \setminus N^r(v_0)$ (see Figure 1(4)). It is not difficult to see that $f = (V'_0, V'_1, V'_2) = (V \setminus \{v_0, v_1, v_2\}, \{v_1, v_2\}, \{v_0\})$ is a $\gamma_{dtR}(D)$-function with $|V'_1| = 2$ and $|V'_2| = 1$. Then, by the proof of Subcase 1.2, conditions (2.a) and (2.b) hold.

Case 2: $\Delta^r(D) \leq n - 3$.

Subcase 2.1: $|V| = 4$ and $|V_0| = 0$.

Since $|V_0| = 0$, we have $|V_0| = 0$, and then $|V| = |V_0| = 4$. For $n = 4$, it is easy to see that the condition (1) is true by Proposition 2.2.

Subcase 2.2: $|V| = 2$ and $|V_0| = 1$.

In the same manner as the proof of the condition (2.b), it can be obtained that D contains a set X of order 3 such that $V \setminus X \subseteq N^r(x)$ for a vertex $x \in X$ and $D[X]$ has no isolated vertex. That is, condition (3.a) holds.

Subcase 2.3: $|V| = 0$ and $|V_0| = 2$.

Let $X = V_2$. Since $V_2 = \emptyset$ and h is a $\gamma_{dtR}(D)$-function, we have $V \setminus X = V_0 \subseteq N^r(x)$ and $D[X]$ has no isolated vertex. Therefore, condition (3.b) holds.

(\Leftarrow) To show the sufficiency, assume that one of the three conditions (1), (2), and (3) holds in the statement of the theorem.

If (1) holds, we obtain $\gamma_{dtR}(D) \geq 4$ by Propositions 2.1 and 2.2(2). Furthermore, define a function $g_1 : V \to \{0, 1, 2\}$ such that $g_1(v) = 1$ for every vertex $v \in V$. Then $\gamma_{dtR}(D) \leq \omega(g_1) = 4$.

If (2) holds, since $D[V \setminus N^r(v)]$ is not connected for each vertex v with maximum out-degree $\Delta^r(D) = n - 2$ by (2.a), there do not exist two vertices u and v of D such that $V \setminus \{u, v\} \subseteq N^r(v)$ and $D[\{u, v\}]$ is connected.

![Figure 1](image-url)

Figure 1: (1) and (2): The illustrations of Subcase 1.2, where the edge with no direction means that both directions are possible. (3) and (4): The illustrations of Subcase 1.3.
in D. Then, $\gamma_{tr}(D) \geq 4$ follows trivially from Propositions 2.1 and 2.2. On the other hand, by condition (2.b), we have the function $g_5 = (V \setminus X, X \setminus \{x\}, \{x\})$ as a TRDF on D with weight $\omega(g_5) = 4$, and so $\gamma_{tr}(D) \leq 4$.

If (3) holds, we first have $\Delta(D) \leq n - 3$, then there do not exist two vertices u and v of D such that $V\setminus \{u, v\} \subseteq N^+(v)$. Furthermore, we obtain $\gamma_{tr}(D) \geq 4$ by Propositions 2.1 and 2.2. On the other hand, if (3.a) holds, then define the function $g_5 = (V \setminus X, X \setminus \{x\}, \{x\})$ as a TRDF on D with weight $\omega(g_5) = 4$, and so $\gamma_{tr}(D) \leq 4$. If (3.b) holds, then the function $g_5 = (V \setminus X, \emptyset, X)$ is a TRDF on D with weight $\omega(g_5) = 4$, and so $\gamma_{tr}(D) \leq 4$.

Consequently, we have $\gamma_{tr}(D) = 4$. □

3 The digraphs of order $n \geq k$ with $\gamma_{tr}(D) = k$ for any positive integer $k \geq 5$

Definition 3.1. Let $t \geq 2$ be a positive integer and $D = (V, A)$ a digraph. Then, D has an (X, W, t)-structure if there exists a subset $X \subseteq V$ such that for a subset $W \subset V$ with $0 \leq |W| \leq \lfloor \frac{t}{2} \rfloor$ the following hold:

1. $W \subseteq X$, $V \setminus X \subseteq N^+(W)$, and $D[X]$ have no isolated vertex if $1 \leq |W| \leq \lfloor \frac{t}{2} \rfloor$, which includes two cases (Figure 2);
2. $X = V$ and $D[X] = D$ has no isolated vertex if $|W| = 0$.

Theorem 3.2. Let $D = (V, A)$ be a digraph of order $n \geq 4$ with no isolated vertex. Then, $\gamma_{tr}(D) \leq n$. Furthermore, the equality holds if and only if there does not exist an $(X, W, n-1)$-structure with $|X| \leq n-1-|W|$.

Proof. Define a function $h : V \rightarrow \{0, 1, 2\}$ such that $h(v) = 1$ for each vertex $v \in V$. Then, h is a TRDF on D, and so $\gamma_{tr}(D) \leq \omega(h) = n$. In the following, we show the second assertion.

(\Rightarrow) Assume $\gamma_{tr}(D) = n$. Suppose, however, that there is an $(X, W, n - 1)$-structure with $|X| \leq n - 1 - |W|$ in D. If $|W| = 0$, then $|V| = |X| \leq n - 1$, a contradiction. If $1 \leq |W| \leq \left\lfloor \frac{n-1}{2} \right\rfloor$, then the function $f = (V \setminus X, X \setminus W, W)$ is a TRDF on D of weight $\omega(f) \leq |X| - |W| + 2|W| \leq n - 1 - |W| - |W| + 2|W| = n - 1 < n = \gamma_{tr}(D)$, a contradiction.

(\Leftarrow) It is sufficient to prove that $\gamma_{tr}(D) \geq n$. Suppose, however, that $\gamma_{tr}(D) \leq n - 1$. Let $h_1 = (V_0, V_1, V_2)$ be a $\gamma_{tr}(D)$-function. Since $\gamma_{tr}(D) = |V_1| + 2|V_2| \leq n - 1$, we have $1 \leq |V_2| \leq \left\lfloor \frac{n-1}{2} \right\rfloor$. Furthermore, since $\gamma_{tr}(D) = |V_0| + 2|V_1| \leq n - 1 = |V_0| + |V_1| + |V_2|$, we obtain $|V_0| \geq |V_1| + 1$. Let $W = V_2$ and $X = V_0 \cup V_2$. Then, $V \setminus X \subseteq N^+(W)$ and $D[X]$ has no isolated vertex by the definition of TRDF, where $|X| = |V_0| + |V_2| = n - |V_0| \leq n - |W| - 1$, a contradiction. Consequently, $\gamma_{tr}(D) \geq n$. Hence, $\gamma_{tr}(D) = n$, as desired. □

![Figure 2](image-url)

Figure 2: (1): $N^+(W) \cap X \neq \emptyset$; (2): $N^+(W) \cap X = \emptyset$.

Lemma 3.3. Let \(k \geq 5 \) be an integer and \(D = (V, A) \) a digraph of order \(n \geq k + 1 \) with \(\gamma_{RD}(D) \geq k \). If there exists a subset \(W \subset V \) with \(1 \leq |W| \leq \left\lfloor \frac{k}{2} \right\rfloor \) such that \(D[V \setminus N^+(W)] \) has an isolated vertex, then \(|N'[W]| \leq n + 2|W| - k \).

Proof. Let \(W \subset V \) with \(1 \leq |W| \leq \left\lfloor \frac{k}{2} \right\rfloor \) be a set such that \(D[V \setminus N^+(W)] \) has an isolated vertex. Suppose, however, that \(|N'[W]| \geq n + 2|W| - k + 1 \). Since \(D[V \setminus N^+(W)] \) has an isolated vertex, the function \(g = (N^+(W), V \setminus N'[W], W) \) is a TRDF on \(D \). Then, \(\gamma_{RD}(D) \leq \omega(g) = |V \setminus N'[W]| + 2|W| \leq n - (n + 2|W| - k + 1) + 2|W| = k - 1 \), a contradiction to \(\gamma_{RD}(D) \geq k \). \(\Box \)

Lemma 3.4. Let \(k \geq 5 \) be an integer and \(D = (V, A) \) a digraph of order \(n \geq k + 1 \) with \(\gamma_{RD}(D) \geq k \). If there exists a subset \(W \subset V \) with \(1 \leq |W| \leq \left\lfloor \frac{k}{2} \right\rfloor \) such that \(D[V \setminus N^+(W)] \) has at least one isolated vertex, then \(D \) has an \((X, W, k)\)-structure and \(D[X] \) has no \((X', W', k - |W| - 1)\)-structure with \(|X'| + |W'| \leq k - 1 - |W|\) and \(W \subseteq X' \).

Proof. Let \(W \subset V \) with \(1 \leq |W| \leq \left\lfloor \frac{k}{2} \right\rfloor \) be a set such that \(D[V \setminus N^+(W)] \) has at least one isolated vertex. Suppose that \(h = (V_0, V_1, V_2) \) is a TRDF on \(D \), let \(X = V_1 \cup W \). Then, we have \(V \setminus X \subseteq N^+(W) \) and \(D[X] \) has no isolated vertex by the definition of TRDF. This implies that \(D \) has an \((X, W, k)\)-structure in \(D \).

Next, we prove that \(D[X] \) does not contain an \((X', W', k - |W| - 1)\)-structure with \(|X'| + |W'| \leq k - 1 - |W|\) and \(W \subseteq X' \). By contradiction, let \(D_1 = D[X] \).

Suppose, however, that \(D_1 \) has an \((X', W', k - |W| - 1)\)-structure with \(|X'| + |W'| \leq k - 1 - |W|\) and \(W \subseteq X' \). Then, the function \(f = (X'X', X'W', W') \) is a TRDF on \(D_1 \).

Let \(h_1 = (V_0^b, V_1^b, V_2^b) \) be defined as follows: \(h_1(v) = 2 \) for each vertex \(v \in W \), \(h_1(u) = 0 \) for each vertex \(u \in V \setminus X \), and \(h_1(x) = f(x) \) for each vertex \(x \in X \setminus W \). This implies \(V_0^b = (V \setminus X) \cup (X'X') \), \(V_1^b = X' \setminus (W \cup W') \), and \(V_2^b = W \cup W' \). If \(|W'| = 0 \), then \(V_0^h = V \setminus X \), \(V_1^h = X' \setminus W \), and \(V_2^h = W \). According to the definitions of \((X, W, k)\)-structure and \((X', W', k - |W| - 1)\)-structure, we have \(V_0^h \subseteq N^+(V_2^b) \) and \(D[V_0^h \cup V_2^b] = D[X] = D[X'] \) has no isolated vertex. Thus, \(h_1 \) is a TRDF on \(D \). Similarly, if \(1 \leq |W'| \leq \left\lfloor \frac{k - 1 - |W| - 1}{2} \right\rfloor \), then we have \(X'X' \subseteq N^+(W') \) and \(D[X'] \) has no isolated vertex by the definition of \((X', W', k - |W| - 1)\)-structure. Furthermore, \(V \setminus X \subseteq N^+(W') \) according to the definition of \((X, W, k)\)-structure. Thus, \(V_0^h = (V \setminus X) \cup (X'X') \subseteq N^+(W \cup W') = N^+(V_2^b) \) and \(D[V_0^h \cup V_2^b] = D[X] \) has no isolated vertex. That is, \(h_1 \) is a TRDF on \(D \). Hence, \(\gamma_{RD}(D) \leq \omega(h_1) = |X' \setminus (W \cup W')| + 2|W \cup W'| \leq |X'| + |W'| \leq k - 1 \), a contradiction to \(\gamma_{RD}(D) \geq k \). This completes the proof of Lemma 3.4. \(\Box \)

Theorem 3.5. Let \(k \geq 5 \) be an integer and \(D = (V, A) \) a digraph of order \(n \geq k + 1 \). Then, \(\gamma_{RD}(D) \geq k \) if and only if the following hold:

1. for any subset \(W \subset V \) with \(1 \leq |W| \leq \left\lfloor \frac{k}{2} \right\rfloor \) such that \(D[V \setminus N^+(W)] \) has an isolated vertex, there must be \(|N'[W]| \leq n + 2|W| - k \);
2. for any subset \(W \subset V \) with \(1 \leq |W| \leq \left\lfloor \frac{k}{2} \right\rfloor \) such that \(D[V \setminus N^+(W)] \) has at least one isolated vertex, \(D \) has an \((X, W, k)\)-structure and \(D[X] \) has no \((X', W', k - |W| - 1)\)-structure with \(|X'| + |W'| \leq k - 1 - |W|\) and \(W \subseteq X' \).

Proof. Lemmas 3.3 and 3.4 mean that necessity holds. Here, we just show sufficiency.

Let \(n = (V_0, V_1, V_2) \) be a \(\gamma_{RD}(D) \)-function. Suppose, however, that \(\gamma_{RD}(D) = |V_1| + 2|V_2| \leq k - 1 \). Then, \(1 \leq |V_2| \leq \left\lfloor \frac{k - 1 - |V_1|}{2} \right\rfloor \leq \left\lfloor \frac{k}{2} \right\rfloor \).

If \(D[V \setminus N^+(V_2)] \) has no isolated vertex, then we have \(|N'[V_2]| \leq n + 2|V_2| - k \) by (1). This implies

\[
|N'[V_2]| + k \leq n + 2|V_2| - k \leq 2|V_2| + 2|V_2| - k \leq 2|V_2|.
\]

Furthermore, \(\gamma_{RD}(D) = |V_1| + 2|V_2| \leq k - 1 \), then

\[
k - 2|V_2| \geq |V_2| + 1.
\]

(3.1)
Combining the inequalities (3.1) and (3.2), we obtain \(n \geq |N^*[V_2]| + |V_1| + 1 = |V_0| + |V_2| + |V_1| + 1 \), a contradiction.

If \(D[V \setminus N^*(V_2)] \) has at least one isolated vertex, then let \(W = V_2, X' = X = V_1 \cup W, \) and \(W' = \emptyset. \) It is not difficult to see that \(W \subseteq X, V \setminus X \subseteq N^*(W), \) and \(D[X] \) has no isolated vertex. This implies that there exists an \((X, W, k)\)-structure. Furthermore, since \(y_{\text{id}}(D) = |V_2| = |X'| = |X| \leq k - 1 - |W|. \) Thus, \(|X'| + |W'| \leq k - 1 - |W|. \) On the other hand, \(W \subseteq X', D[X'] = D[X] \) has no isolated vertex, and \(|W'| = 0, \) and then there exists an \((X', W', k - |W| - 1)\)-structure with \(|X'| + |W'| \leq k - 1 - |W| \) and \(W \subseteq X' \) in \(D[X], \) a contradiction to (2). \(\square \)

Theorem 3.6. Let \(k \geq 5 \) be an integer and \(D = (V, A) \) a digraph of order \(n \geq k + 1. \) Then, \(y_{\text{id}}(D) = k \) if and only if \(D \) satisfies Theorem 3.5(1) and (2) and one of the following is true:

(1) there exists a subset \(W \subseteq V \) with \(1 \leq |W| \leq \left\lfloor \frac{k}{2} \right\rfloor \) such that \(|N^*[W]| = n + 2|W| - k, \) and \(D[V \setminus N^*(W)] \) has no isolated vertex;

(2) \(D \) has an \((X, W, k)\)-structure with \(|X| = k - |W| \) and \(D[V \setminus N^*(W)] \) has at least one isolated vertex.

Proof. \((\Rightarrow)\) From \(y_{\text{id}}(D) = k, \) we see that \(D \) satisfies Theorem 3.5(1) and (2). Next, we prove that (1) or (2) of this theorem holds. Let \(h = (V_0, V_1, V_2) \) be a \(y_{\text{id}}(D)\)-function. Since \(|V_0| + 2|V_2| = y_{\text{id}}(D) = k, \) we may deduce that one of the following is true:

(i) \(|V_0| = 0; \)

(ii) \(1 \leq |V_0| \leq \left\lfloor \frac{k}{2} \right\rfloor. \)

Suppose that (i) holds. Obviously, we have \(|V_0| = 0, \) and then \(|V_0| = |V_1| = k, \) a contradiction to \(n \geq k + 1. \)

We now suppose that (ii) holds and distinguish two cases as follows.

Case 1: \(D[V \setminus N^*(V_2)] \) has no isolated vertex.

Let \(W = V_2. \) It is easy to see that \(1 \leq |W| \leq \left\lfloor \frac{k}{2} \right\rfloor \) and \(D[V \setminus N^*(W)] \) has no isolated vertex. By Theorem 3.5(1), we have \(|N^*[W]| \leq n + 2|W| - k. \) It follows that \(|V_1| = n - (|V_0| + |W|) = n - |N^*[W]| \geq k - 2|W| = |V_2| \) according to \(y_{\text{id}}(D) = k, \) and hence \(|N^*[W]| = n + 2|W| - k, \) (1) holds.

Case 2: \(D[V \setminus N^*(V_2)] \) has at least one isolated vertex.

Let \(W = V_2. \) It is easy to see that \(1 \leq |W| \leq \left\lfloor \frac{k}{2} \right\rfloor \) and \(D[V \setminus N^*(W)] \) has at least one isolated vertex. Since \(h \) is a \(y_{\text{id}}(D)\)-function, we obtain \(V(V_1 \cup W) \subseteq N^*(W) \) and \(D[V_1 \cup W] \) has no isolated vertex. Furthermore, since \(y_{\text{id}}(D) = |V_0| + 2|W| = k, |V_1| + |W| = k - |W|, \) it implies that there is a \((V_1 \cup W, W, k)\)-structure with \(|V_1 \cup W| = k - |W| \) in \(D. \) Let \(X = V_1 \cup W, \) then (2) holds.

\((\Leftarrow)\) By Theorem 3.5, we have \(y_{\text{id}}(D) \geq k. \) Thus, it suffices for us to show that \(y_{\text{id}}(D) \leq k. \) If (1) holds, then the function \(g_0 = (N^*(W), V \setminus N^*[W], W) \) is a TRDF on \(D. \) Thus, \(y_{\text{id}}(D) \leq \omega(g_0) = |V \setminus N^*[W]| + 2|W| = n - (n + 2|W| - k) + 2|W| = k. \) If (2) holds, it is not difficult to verify that \(g_1 = (V \setminus X, X \setminus W, W) \) is a TRDF on \(D. \) Note \(|X| = k - |W|, \) then we have \(y_{\text{id}}(D) \leq \omega(g_1) = |X \setminus W| + 2|W| = k - 2|W| + 2|W| = k. \) Consequently, \(y_{\text{id}}(D) = k. \) \(\square \)

Acknowledgment: We would like to thank the anonymous referee for a thorough and helpful reading of the article.

Funding information: X. Zhang: The research is partially supported by the Fundamental Research Program of Shanxi Province (20210302123202). R. Li: The research is partially supported by the Youth Foundation of Shanxi Province (201901D211197).

Author contributions: All authors contributed equally to the writing of this article. All authors read and approved the final manuscript.

Conflict of interest: The authors state that there is no conflict of interest.
Data availability statement: The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References