The construction of nuclei for normal constituents of B_π-characters

Abstract: Let G be a π-separable group for some set π of primes, let $\chi \in B_\pi(G)$ and let $N \triangleleft G$. In this article, we explore how to construct a nucleus for an irreducible constituent of χ_N via the given nucleus (W, y) for χ.

Keywords: π-separable group, nucleus, Fong character, quasi-primitive character

MSC 2020: 20C15, 20C20

1 Introduction

All groups considered in this article are finite, and the terminology and notation can be found in [1,2]. Let π be a set of primes, and let G be π-separable. Gajendragadkar [3] introduced the π-special characters for π-separable groups and showed that the product of a π-special character with a π'-special character is irreducible. In [4], Isaacs defined $\chi \in \text{Irr}(G)$ to be π-factored if $\chi = a\beta$, where a is π-special and β is π'-special. Furthermore, he constructed the set $B_\pi(G)$, which is a canonical lift of $I_\pi(G)$, where $I_\pi(G)$ is the set of the irreducible π-partial characters of G. In particular, when $\pi = p'$ is the complement of a prime p, then $B_p(G)$ is exactly a lift of $\text{IBr}(G)$ (the set of irreducible Brauer characters of G at the prime p).

The key to define $B_\pi(G)$ is the construction of a nucleus (W, y) for a given $\chi \in \text{Irr}(G)$ satisfying $W \leq G$, y is π-factored, and $y^G = \chi$. We briefly review it here for convenience. Let $S^*(G)$ denote the set of maximal subnormal π-factored pairs of G. If χ is π-factored, then we define $(W, y) = (G, \chi)$. If χ is not π-factored, we choose $(S, \phi) \in S^*(G)$ such that $(S, \phi) \leq (G, \chi)$ and observe that $G_\phi < G$. In this case, Isaacs proved that there exists a unique irreducible character $\xi \in \text{Irr}(G_\phi)$ such that $\xi^G = \chi$, where G_ϕ is the stabilizer of (S, ϕ) in G.

By induction, a nucleus (W, y) for χ has already been constructed, and Isaacs called (W, y) a nucleus for χ. We mention that all nuclei for χ are uniquely determined up to G-conjugacy, and that the set $B_\pi(G)$ consists of those characters $\chi \in \text{Irr}(G)$ with a π-special nucleus character y.

Similarly, Navarro [5] constructed a normal nucleus for a given $\chi \in \text{Irr}(G)$ with a maximal normal π-factored pair of ϕ instead of Isaacs’ maximal subnormal π-factored pair of χ, defined the set $\mathcal{N}_\pi(G)$ as the set of those members of $\text{Irr}(G)$ having π-special nucleus characters, and showed that $\mathcal{N}_\pi(G)$ is also a lift of $I_\pi(G)$. Later, Lewis [6] introduced another new nuclei from a normal π-series $\mathcal{N}_\pi(G)$, and defined the set $B_\pi(G : \mathcal{N})$, which is also a lift of $I_\pi(G)$.

In this article, we study the behavior of the Isaacs’ nucleus (W, y) for $\chi \in B_\pi(G)$ with respect to normal subgroups N of G, so the nuclei mentioned below are in the sense of Isaacs. In the case where G/N is a π'-group, Isaacs showed that a nucleus for χ can be constructed by a nucleus of an irreducible constituent of χ_N, see Theorem 6.2(b) of [4]. We will consider the opposite direction.
Theorem A. Let \(N < G \), where \(G \) is \(\pi \)-separable. Let \(\chi \in B_\pi(G) \), and let \((W, y)\) be a nucleus for \(\chi \). Write \(V = N \cap W \), and let \(\tau \in \Irr(V) \) lie under \(y \).

1. If \(G / N \) is a \(\pi' \)-group, then \((V, \tau)\) is a nucleus for some irreducible constituent of \(\chi_N \).
2. If \(G / N \) is a \(\pi \)-group, and assume further that some Fong character associated with \(\chi \) is quasi-primitive. Then, \((V, \tau)\) is a nucleus for some irreducible constituent of \(\chi_N \).

In the situation of Theorem A(2), let \(\alpha \in \Irr(H) \) be a quasi-primitive Fong character associated with \(\chi \), where \(H \) is a Hall \(\pi \)-subgroup of \(G \). Write \(D = N \cap H \), so that \(D \) is a Hall \(\pi \)-subgroup of \(N \), and let \(\beta \) be the unique irreducible character of \(\alpha_N \). By Theorem B of [7], we see that \(\beta \) is also a Fong character for \(N \), but it need not be quasi-primitive.

The following is immediate.

Corollary B. Let \(N < G \), where \(G \) is \(\pi \)-separable. Let \(\chi \in B_\alpha(G) \) have \(\pi' \)-degree, and let \((W, y)\) be a nucleus for \(\chi \). Write \(V = N \cap W \), and let \(\tau \in \Irr(V) \) lie under \(y \). Then, \((V, \tau)\) is a nucleus for some irreducible constituent of \(\chi_N \).

2 Preliminaries

In this section, we review some preliminary results, which we refer to [8].

Lemma 2.1. Let \((S, \varphi)\) \(\in S^*(G)\), where \(G \) is \(\pi \)-separable, and let \(N < G\), where \(G / N \) is either a \(\pi \)-group or a \(\pi' \)-group. Write \(D = S \cap N \), and let \(\delta \in \Irr(D) \) lie under \(\varphi \). Then, \((D, \delta)\) \(\in S^*(N)\).

Proof. This is precisely Lemma 4.7 of [8].

Lemma 2.2. Let \(N < G \), where \(G \) is \(\pi \)-separable, and let \(\theta \in \Irr(N) \) be \(\pi \)-special.

(a) If \(G / N \) is a \(\pi \)-group, then every member of \(\Irr(G\theta) \) is \(\pi \)-special.

(b) If \(G / N \) is a \(\pi' \)-group and \(\theta \) is invariant in \(G \), then \(\theta \) has a canonical extension \(\chi \in \Irr(G) \) and \(\chi \) is the unique \(\pi \)-special character in \(\Irr(G\theta) \). If \(\theta \) is not invariant in \(G \), then no member of \(\Irr(G\theta) \) is \(\pi \)-special.

Proof. See Theorem 2.4 of [8].

Lemma 2.3. Let \((S, \varphi)\) \(\in S^*(G)\), where \(G \) is \(\pi \)-separable. Suppose that \((D, \delta) \leq (S, \varphi)\), where \(D < S \) and \(S / D \) is either a \(\pi \)-group or a \(\pi' \)-group. Then, \(G_D \leq N_G(S) \).

Proof. This is precisely Lemma 4.16 of [8].

Lemma 2.4. Let \(G \) be \(\pi \)-separable, and suppose \((S, \varphi)\) \(\in S^*(G)\). If \(G_\varphi = G \), then \(S = G \).

Proof. This is precisely Lemma 4.10 of [8].

Lemma 2.5. Let \((S, \varphi)\) \(\in S^*(G)\), where \(G \) is \(\pi \)-separable. Then, induction defines a bijection \(\Irr(G_\varphi) \rightarrow \Irr(G) \).

Proof. This is precisely Theorem 4.9 of [8].

Lemma 2.6. Let \(\alpha \in \Irr(H) \) be quasi-primitive, where \(H \) is a Hall \(\pi \)-subgroup of a \(\pi \)-separable group \(G \), and let \(H \leq W \leq G \), where \(W \) is the largest subgroup to which \(\alpha \) extends. Let \(y \in \Irr(W) \) be the unique \(\pi \)-special extension of \(\alpha \) to \(W \), and write \(\chi = y^G \). Then, \(\chi \) is irreducible, and in fact, \(\chi \in B_\alpha(G) \). In addition, \((W, y)\) is a nucleus for \(\chi \).
Proof. See Theorem 4.30 of [8]. □

Lemma 2.7. Suppose that G is π-separable, and let $H \leq G$, where $|G : H|$ is a π'-number. Then, restriction defines an injection map from $X_\pi(G)$ to $X_\pi(H)$. In particular, this holds if H is a Hall π-subgroup of G.

Proof. This is precisely Theorem 2.10 of [8]. □

Lemma 2.8. Let $N \triangleleft G$, where G is π-separable and G/N is a π'-group, and let $\delta \in \text{Irr}(D)$ lie under ϕ. Then,
(a) $G_\phi \cap N_\phi < G_\phi$;
(b) $G_\phi/(G_\phi \cap N_\phi)$ is a π'-group;
(c) $G_\phi \cap N_\phi < N_\phi$;
(d) $N_\phi/(G_\phi \cap N_\phi)$ is a π'-group.

Proof. See Lemma 4.17 of [8]. □

Lemma 2.9. Let $N \triangleleft G$, where G is π-separable and G/N is a π'-group. Let $\chi \in B_\pi(G)$, and suppose that $N \leq K \leq G$. Then, every irreducible constituent of X_K lies in $B_\pi(K)$.

Proof. This is precisely Theorem 4.25 of [8]. □

Lemma 2.10. Let $N \triangleleft G$, where G is π-separable and G/N is a π'-group, and let $\psi \in \text{Irr}(N)$.
(a) If $\chi \in B_\pi(G)$ lies over ψ, then $\psi \in B_\pi(N)$.
(b) If $\psi \in B_\pi(N)$, then there exists a unique character $\chi \in B_\pi(G)$ that lies over ψ. In addition, $[\chi_N, \psi] = 1$.
(c) Suppose that ψ and χ are as in (b). Let (V, τ) be a nucleus for ψ, and write $W = G_\tau$. Then, W/V is a π'-group, and (W, y) is a nucleus for χ, where y is the canonical extension of τ to W.

Proof. See Theorem 4.19 of [8]. □

3 Main results

We begin with the proof of Theorem A discussed in Section 1.

Proof of Theorem A. (1) Choose $(S, \phi) \in S(G)$ with $(S, \phi) \leq (W, \gamma)$ and $W \leq G_{\phi}$, and let $S_1 = N \cap S$. It is clear that $S_1 \leq V$. Let $\phi_1 \in \text{Irr}(S_1)$ lie under ϕ, and observe that $(S_1, \phi_1) \in S'(N)$ by Lemma 2.1. Since $\chi \in B_\pi(G)$, we have that both γ and ϕ are π-special. Note that since W/V is a π'-group, it follows that γ_τ is irreducible, and thus $\tau = \gamma_\tau$ is π-special. This means that τ is W-invariant, and Y is a π-special extension of τ to W. By Lemma 2.2(b), we have Y is the unique π-special character in $\text{Irr}(W/\tau)$. Also, since S/S_1 is a π'-group and ϕ is π-special, it follows that ϕ_{S_1} is irreducible, and thus $\phi_{S_1} = \phi_1$ is π-special. This means that ϕ_1 is S-invariant, and ϕ is a π-special extension of ϕ_1 to S. By Lemma 2.2(b), we have ϕ is the unique π-special character in $\text{Irr}(S_1)$.

Since ϕ_1 lies under γ, and $Y = \tau$ is irreducible, it follows that ϕ_1 lies under τ.

We claim that $G_{\phi_1} = G_{\phi}$. Since G_{ϕ_1} normalizes $S \cap N = S_1$ and stabilizes ϕ, we see that it also stabilizes ϕ_1 because $\phi_1 = \phi_{S_1}$, and thus $G_{\phi} \leq G_{\phi_1}$. On the other hand, by Lemma 2.3, we know that G_{ϕ_1} normalizes S. Since G_{ϕ_1} stabilizes S and ϕ_1, by the uniqueness of ϕ, we know that G_{ϕ_1} stabilizes ϕ, and thus $G_{\phi_1} \leq G_{\phi}$, as claimed. So we conclude that $N_{\phi_1} = G_{\phi_1} \cap N = G_{\phi} \cap N$, and thus $N_{\phi_1} \triangleleft G_{\phi}$ and G_{ϕ}/N_{ϕ_1} is a π'-group.

We proceed by induction on $|G|$. Suppose first that $G_{\phi} = G$. Then, $S = G$ by Lemma 2.4, and thus $V = N$, and the π-special character τ is an irreducible constituent of X_N. Then, (V, τ) is a nucleus for τ. We can assume now that $G_{\phi} < G$. By Lemma 2.5, there exists a unique irreducible character $\xi \in \text{Irr}(G_{\phi}/\phi)$ such that...
\[\xi^G = \chi. \] Note that \(\xi \in B_\eta(G_\rho) \), and \((W, \gamma)\) is also a nucleus for \(\xi \). It follows by the inductive hypothesis applied in \(G_\rho \) that \((V, \tau)\) is a nucleus for some irreducible constituent of \(\xi_{N_\eta} \). Let \(\eta = \tau^{N_\eta} \). We have that \((V, \tau)\) is a nucleus for \(\eta \). Now \(\eta \) lies under \(\xi \) and over \(\tau \), and thus under \(\chi \) and over \(\varphi_1 \). By Lemma 2.5, we conclude that \(\psi = \eta^N \) is irreducible. It follows that \(\psi \) lies under \(\chi \), and \((V, \tau)\) is a nucleus for \(\psi \). This proves (1).

(2) Let \(\alpha \in \text{Irr}(H) \) be a quasi-primitive Fong character associated with \(\chi \), where \(H \) is a Hall \(\pi \)-subgroup of \(G \). By Lemma 2.6, it is no loss to assume that \((H, \alpha) \leq (W, \gamma)\) because the nuclei for \(\chi \) are conjugate in \(G \), and note that \(W \) is precisely the largest subgroup of \(G \) to which \(\alpha \) extends, and \(y \) is the unique \(\pi \)-special extension of \(\alpha \) to \(W \).

Since \(G / N \) is a \(\pi \)-group, it follows that \(G = NH. \) Write \(D = H \cap N \). Then, \(D \lhd H \) and \(D = H \cap V \), and thus \(D \) is a Hall \(\pi \)-subgroup of \(V \). Since \(\alpha \) is quasi-primitive, it follows that there exists a unique \(\beta \in \text{Irr}(D) \) that lies under \(\alpha \), and thus \(\beta \) is the unique irreducible constituent of \(\gamma_D \).

We claim that \(y \) is also quasi-primitive. Let \(M \lhd W \). Then, \(M \cap H \lhd H \), and \(M \cap H \) is a Hall \(\pi \)-subgroup of \(M \). Since \(\alpha \) is quasi-primitive, then there exists a unique \(\eta \in \text{Irr}(M \cap H) \) that lies under \(\alpha \). It follows that \(\zeta \) is the unique irreducible constituent of \(\gamma_{M \cap H} \). Since \(M \lhd W \) and restriction defines an injective map from \(\chi_{\eta}(M) \) into \(\chi_{\eta}(M \cap H) \) by Lemma 2.7, we have that \(\chi_{\eta} \) has the unique constituent \(\rho_1 \), and \(\rho_1 \lhd H \), as desired.

We choose \((S, \varphi) \in S'(G)\) that lies under \((W, \gamma)\). Then, \(W \lhd G_\rho \), and thus \(\varphi \) is the unique irreducible constituent of \(\chi_S \). Write \(S_1 = S \cap N \), and let \(\varphi_1 \in \text{Irr}(S_1) \) lie under \(\varphi \), and thus under \(\gamma \). It follows by Lemma 2.1 that \((S_1, \varphi_1) \in S'(N)\). Note that \(V \lhd W \) and \(S \lhd W \). Then, \(S_1 \lhd W \) because \(S_1 = S \cap N = S \cap W \cap N = S \cap V \). Since \(\gamma \) is quasi-primitive, we see that \(\varphi_1 \) is the unique irreducible constituent of \(\chi_{S_1} \), and thus \(\varphi_1 \) is the unique irreducible constituent of \(\varphi_{S_1} \). Furthermore, we have that \(\tau \) is the unique irreducible constituent of \(\gamma_V \) because \(V \lhd W \). This forces that \(\varphi_1 \) is the unique irreducible constituent of \(\tau_{S_1} \). This means that \(\varphi_1 \) is \(V \)-invariant and \(S \)-invariant. Hence, \(V \leq N_{\varphi_1} \). Since \(\gamma \) is \(\pi \)-special, it follows that \(\tau \) is \(\pi \)-special, and thus \(\tau_0 = \beta \) because \(D \) is a Hall \(\pi \)-subgroup of \(V \).

Now we prove \(G_\rho \cap N = N_{\varphi_1} \). By Lemma 2.8, we conclude that \(N_{\varphi_1} / (G_\rho \cap N_{\varphi_1}) \) is a \(\pi \)-group. Since \(|N_{\varphi_1} : N_{\varphi_1} \cap G_\rho| \) divides \(|N : D| \), and \(|N : D| = |G : H| \) is a \(\pi' \)-number, we see that \(|N_{\varphi_1} : N_{\varphi_1} \cap G_\rho| = 1 \). Hence, \(N_{\varphi_1} \leq G_\rho \), and thus \(N_{\varphi_1} \leq G_\rho \cap N \). In order to prove \(G_\rho \cap N \leq N_{\varphi_1} \), it suffices to show that \(G_\rho \cap N \) stabilizes \((S_1, \varphi_1) \). Since \(S_1 = S \cap N \) and \(N \lhd G \), it follows that \(G_\rho \cap N \) stabilizes \(S \), \(\varphi \), and \(S_1 \). Recall that \(\varphi_1 \) is the unique irreducible constituent of \(\varphi_{S_1} \), it follows that \(G_\rho \cap N \) stabilizes \(\varphi_1 \), as wanted.

Work by induction on \(|G| \). If \(G_\rho = G \), by Lemma 2.4, we conclude that \(S = G \). Then, \(V = N \) and the \(\pi \)-special character \(\tau \) is an irreducible constituent of \(\chi_S \), and thus \((V, \tau)\) is a nucleus for itself. Now we assume \(G_\rho < G \). By Lemma 2.5, there exists a unique irreducible character \(\xi \in \text{Irr}(G_\rho \varphi) \) such that \(\xi^G = \chi \). By the inductive hypothesis applied in the group \(G_\rho \) with respect to the normal group \(N_\rho \), and the character \(\xi \in \text{Irr}(G_\rho \varphi) \), we know that \((V, \tau)\) is a nucleus for some irreducible constituent of \(\chi_{G_\rho \varphi} \). Let \(\eta = \tau^{N_\eta} \). Then, we have that \((V, \tau)\) is a nucleus for \(\eta \). Now \(\eta \) lies under \(\xi \) and over \(\tau \), and thus under \(\chi \) and over \(\varphi_1 \). By Lemma 2.5, it follows that \(\eta^N = \psi \) is irreducible. We see that \(\psi \) lies under \(\chi \) and \((V, \tau)\) is a nucleus for \(\psi \), and the result follows.

Corollary 3.1. Let \(N \lhd G \), where \(G \) is \(\pi \)-separable and \(G / N \) is a \(\pi' \)-group and let \(N \leq K \leq G \). Let \(\chi \in B_\eta(G) \) and suppose that \(\xi \) is an arbitrary irreducible constituent of \(\chi_K \). Then, we can choose some nucleus \((W, \gamma)\) for \(\chi \) such that \((W \cap K, \tau_{W \cap K})\) is a nucleus for \(\xi \).

Proof. Let \(\psi \) be an arbitrary irreducible constituent of \(\xi_K \). Then, \(\xi \in B_\eta(K) \) and \(\psi \in B_\eta(N) \) by Lemma 2.9. Since \(N \lhd G \), it follows that all of the irreducible constituents of \(\chi_K \) form an orbit under the conjugation action of \(G \) on \(\text{Irr}(N) \). By Theorem A(1), we can choose a nucleus \((W, \gamma)\) for \(\chi \) such that \((W \cap N, \gamma_{W \cap N})\) is a nucleus for \(\psi \) and note that \(W \) is the stabilizer of \((W \cap N, \gamma_{W \cap N})\) in \(G \) and \(\gamma \) is the canonical extension of \(\gamma_{W \cap N} \) to \(W \). Hence, \(\gamma_{W \cap K} \) is the canonical extension of \(\gamma_{W \cap N} \) to \(W \cap K \) and \(W \cap K \) is the stabilizer of \((W \cap N, \gamma_{W \cap N}) \) in \(K \). By Lemma 2.10, we have that \((W \cap K, \gamma_{W \cap K})\) is a nucleus for \(\xi \).
Proof of Corollary B. Since $\chi = \gamma^G$, it follows that $\chi(1) = |G : W|\gamma(1)$. We know that $\chi(1)$ is a π'-number. Hence, $\gamma(1) = 1$, and $|G : W|$ is a π'-number. Then, there exists a Hall π-subgroup H of G with $H \leq W$. Writing $\lambda = \gamma_H$, we conclude that $\lambda \in \operatorname{Irr}(H)$ is linear and is quasi-primitive certainly.

If $|G : N| = 1$, then $(V, \tau) = (W, \gamma)$, and the result is trivial. We can therefore assume that $N < G$, and we proceed by induction on $|G : N|$. Let M / N be a chief factor of G. Then, we have that M / N is a π'-group or a π-group. Observing that $|G : M| < |G : N|$ and $M \leq G$, by the inductive hypothesis, we conclude that $(M \cap W, \gamma_M)$ is a nucleus for an irreducible constituent ψ of χ_M.

If M / N is a π'-group, by Theorem A(1), we know that $(N \cap M \cap W, (\gamma_{M\cap W})(N\cap M\cap W)) = (N \cap W, \gamma_{W}) = (V, \tau)$ is a nucleus for an irreducible constituent θ of ψ_N. Obviously, θ is an irreducible constituent of χ_N. If M / N is a π-group and note that $\lambda_{M\cap H}$ is quasi-primitive, where $M \cap H$ is a Hall π-subgroup of M, by Theorem A(2), we also conclude that (V, τ) is a nucleus for an irreducible constituent of χ, and the proof is complete. □

Conflict of interest: The authors state that there is no conflict of interest.

References