Research Article

Bana Al Subaiei*

On pomonoid of partial transformations of a poset

https://doi.org/10.1515/math-2023-0161
received July 12, 2023; accepted November 22, 2023

Abstract: The main objective of this article is to study the ordered partial transformations \(\mathcal{PO}(X) \) of a poset \(X \). The findings show that the set of all partial transformations of a poset with a pointwise order is not necessarily a pomonoid. Some conditions are implemented to guarantee that \(\mathcal{PO}(X) \) is a pomonoid and this pomonoid is denoted by \(\mathcal{PO}'(X) \). Moreover, we determine the necessary conditions in order that the partial order-embedding transformations define the ordered version of the symmetric inverse monoid. The findings show that this set is an inverse pomonoid and we will denote it by \(\mathcal{IPO}'(X) \). In case the order on the poset \(X \) is total, we explore some properties of \(\mathcal{PO}'(X) \) and \(\mathcal{IPO}'(X) \), including regressive, unitary, and reversible.

Keywords: posets, pomonoids, partial transformations, inverse pomonoid

MSC 2020: 20M20, 06F05, 20M10

1 Introduction and preliminaries

Semigroups of transformations play a role in semigroup theory similar to the role of permutation groups in group theory. For a set \(X \), we let \(\mathcal{PT}(X) \) denote the monoid (under composition) of all partial transformations of \(X \) (i.e., mappings whose domain and image are the subsets of \(X \)). The submonoid of \(\mathcal{PT}(X) \) of all full transformations of \(X \) (i.e., mappings from \(X \) into \(X \)) is denoted by \(\mathcal{T}(X) \). The inverse submonoid of all full injective transformations of \(X \) is denoted by \(\mathcal{I}(X) \). These monoids are very important in the theory of semigroups since every semigroup (resp., inverse semigroup) can be embedded in some \(\mathcal{T}(X) \) (resp., \(\mathcal{I}(X) \)). This fact constitutes an analogy to Cayley’s theorem in group theory. Cayley’s theorem says that every group can be embedded in some symmetric group \(\text{Sym}(X) \) of all permutations on \(X \).

Throughout this work, we will write mappings on the right and compose them from left to right. This means that for \(f : A \to B \) and \(g : B \to C \), we will write \(x f \), instead of \((f(x)) \), and \(x(fg) \), instead of \((gf)(x) \). Now, suppose that \(X \) is a poset (i.e., a partially ordered set). We say that a transformation \(f \) in \(\mathcal{PT}(X) \) is order-preserving (monotone) if \(x \leq y \) implies \(xf \leq yf \), for all \(x, y \in \text{dom}(f) \). Also, we say that a transformation \(f \) in \(\mathcal{PT}(X) \) is order-embedding whenever that \(x \leq y \) if and only if \(xf \leq yf \), for all \(x, y \in \text{dom}(f) \). Note that the product (composition) of two-order-preserving transformations and two-order-embedding transformations is also order-preserving and order-embedding, respectively. As usual, the submonoid of \(\mathcal{PT}(X) \) of all partial order-preserving transformations of \(X \) will be denoted by \(\mathcal{PO}(X) \), while the monoid \(\mathcal{PO}(X) \cap \mathcal{T}(X) \) of all full transformations of \(X \) that preserve the order will be denoted by \(\mathcal{O}(X) \). These monoids have been widely studied when \(X \) is totally ordered, namely, in [1–6].

Considerable attention has been paid over the years to full, injective, partial, and partial injective transformations of a set. While there are advancements being made in the study of these concepts (cf. [7]), the ordered versions have not yet been investigated. Some researchers have studied these concepts on totally

* Corresponding author: Bana Al Subaiei, Department of Mathematics and Statistics, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa, 31982, Saudi Arabia, e-mail: banajawid@kfup.edu.sa

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
ordered sets and have defined them as full and partial order-preserving transformations (see, for instance, [1,2,8,9]). Also, some studies have considered the order-decreasing and increasing of full, partial, and partial one-to-one transformations of a totally ordered set (cf. [3,10–12]). However, none of these studies has looked at these concepts as partially ordered semigroups (or monoids) for any poset \(X \). Al Subaiei in [13] has only studied the full transformations of a poset \(X \) for some specific partially ordered relations on \(X \). To complete this circle of ideas, our purpose here is to focus on the partial order-preserving (monotone) transformations and partial order-embedding transformations of a poset \(X \).

Next, we recall some background. A posemigroup (resp., pomonoid) is a semigroup (resp., monoid) \(S \) partially ordered by \(\leq \), such that \(\leq \) is compatible with the semigroup (resp., monoid) operation, i.e., for all \(x, y, z \in S \), \(x \leq y \implies xz \leq yz \) and \(xz \leq yz \). For more details about monoids and pomonoids, we refer the reader to [14,15]. In [16], Sohail has considered the full transformations of a poset, when he studied the ordered representations of a pomonoid. He has stated that the sets \(O(X) \subseteq \mathcal{T}(X) \) are pomonoids with respect to the usual composition of transformations and pointwise order (i.e., for \(f, g \in O(X), f \leq g \) if and only if \(xf \leq xg \) for all \(x \in X \)). It is worth mentioning that Nasir’s work is mainly focused on the representations of a pomonoid and not the study of the transformations. As partial transformations of a poset \(X \) are not considered yet when \(X \) is not a totally ordered set, so a natural question arises: whether \(\mathcal{P}O(X) \) does constitute a pomonoid when equipped with the pointwise order? Recall that the pointwise order on \(\mathcal{P}O(X) \) is defined as follows:

\[
\forall f, g \in \mathcal{P}O(X), f \leq g \iff \text{dom}(f) \subseteq \text{dom}(g) \quad \text{and} \quad \forall x \in \text{dom}(f), xf \leq xg.
\]

It is worth noting that generalizing these concepts to the ordered case requires more conditions to guarantee the “pomonoid structure” of the set of partial transformations of a poset.

Any subset \(X \) of a poset \(Y \) is called a subposet since the partial order relation is inherited from \(Y \). Let \(X \) be a subposet of a poset \(Y \). In general, the set \(X^{\uparrow Y} = \{ y \in Y : x \leq y \quad \text{for some} \quad x \in X \} \) is known as the upper/upward closure of \(X \). It is clear that \(X \subseteq X^{\uparrow Y} \) and this inclusion relation may be strict in general. Moreover, \(X^{\uparrow Y} \) may be different from the set of upper bounds of \(X \). The following example illustrates these facts.

Example 1.1. Consider the poset \(Y = \{a, b, c, d, e, f\} \) equipped with the following order relation \(\leq_1 \) as in Figure 1.

Also, consider the set \(X = \{a, b, e\} \). Hence, we have \(X^{\uparrow Y} = \{a, b, e, c, d\} \) and the set of upper bounds of \(X \) is \(\{b, d\} \). Then, it is clear that \(X^{\uparrow Y} \supsetneq X \). However, if the order relation on \(Y \) is \(\leq_2 \), which is defined as in Figure 2. Then, \(X^{\uparrow Y} = \{a, b, e\} \), while the set of upper bounds of \(X \) is empty. Hence, \(X^{\uparrow Y} = X \).

Kemprasit [17] studied some properties of the partial transformation of poset \(X \), such as the idempotent elements, shift of an element and regressive. An element \(e \) in any semigroup \(S \) is called idempotent, when \(e^2 = e \) and usually \(E(S) \) denote the set of all idempotent elements in \(S \). The set of idempotents of the partial transformation monoid on poset \(X \), denoted by \(E(\mathcal{P}T(X)) \), is defined as: \(E(\mathcal{P}T(X)) = \{ f \in \mathcal{P}T(X) | \text{im}(f) \subseteq \text{dom}(f) \} \). The shift of an element \(f \in \mathcal{P}T(X) \) is the set \(S(f) = \{ x \in \text{dom}(f) | xf \neq x \} \). The element \(f \in \mathcal{P}T(X) \) is said to be regressive if for every \(x \in \text{dom}(f) \), \(xf \leq x \).

Gould and Shaheen [18] studied the concept of unitary in posemigroup, and then, Al Subaiei and Renshaw [19,20] generalized this concept further. Let \(U \) be a subpomonoid of a pomonoid \(S \) and let \(u, v \in U \) and \(s \in S \).

![Figure 1: Partially ordered relation \(\leq_1 \) on \(Y \).](image-url)
On pomonoid of partial transformations of a poset

is said to be an upper strongly right pounitary in \(S \) when \(v \leq su \) implies \(s \in U \). Moreover, \(U \) is said to be a lower strongly right pounitary in \(S \) when \(su \leq v \) implies \(s \in U \). \(U \) is said to be a right unitary in \(S \) when \(su = v \) implies \(s \in U \). Left-sided versions are defined dually.

Reversibility was studied in the literature for a pomonoid (see, for example, [21,22]). Let \(S \) be a pomonoid, then \(S \) is right reversible, if for any \(s, s' \in S \), we have \(Ss \cap Ss' \neq \emptyset \). However, a pomonoid \(S \) is called weakly right reversible whenever for any \(t, t' \in S \), we have \(St \cap (St') \neq \emptyset \). The set \((St) = \{ s \in S : s \leq k, k \in St \} \) is called the down-set of \(S \). Weakly left reversible is defined dually.

This article is organized as follows: In Section 2, we construct an example showing that \(P\mathcal{O}(X) \) with the pointwise order is not a pomonoid (Example 2.1). Thus, we have added some conditions, and we have considered the set \(P\mathcal{O}'(X) = \{ f \in P\mathcal{O}(X) | \text{dom}(f) = \text{dom}(f') \} \). The main result of this section is Theorem 2.4, which states that \((P\mathcal{O}'(X), \preceq) \) is a pomonoid, when it is equipped with the pointwise order (I). In Section 3, we consider the monoid \(P\mathcal{O}E(X) \) of partial order-embedding transformations on a poset \(X \). It is shown that this monoid is not a pomonoid with respect to the pointwise order. So we restrict ourselves to the set \(P\mathcal{O}E'(X) = \{ f \in P\mathcal{O}E(X) | \text{im}(f) = \text{im}(f') \} \). We establish in Theorem 3.3 that \(IP\mathcal{O}'(X) \) is a subpomonoid of \(P\mathcal{O}'(X) \). Theorem 3.4 states that \(IP\mathcal{O}'(X) \) is an inverse pomonoid. Section 4 is devoted to the study of the pomonoids \(P\mathcal{O}'(X) \) and \(IP\mathcal{O}'(X) \) in case \(X \) is a finite toset (i.e., a totally ordered set). In Proposition 4.1, we prove that if \(X \) is a finite toset, then \(IP\mathcal{O}'(X) \subseteq E(P\mathcal{O}'(X)) \). It is shown that if \(X \) is a finite toset, then \(IP\mathcal{O}'(X) \) is right reversible, and for any \(f \in IP\mathcal{O}'(X) \), \(S(f) = \emptyset \) and \(f \) is regressive (Remark 4.3). Theorem 4.4 states that \(IP\mathcal{O}'(X) \) is a right and left unitary in \(P\mathcal{O}'(X) \), when \(X \) is a finite toset. Table 1 contains all the notations used in this article.

![Figure 2: Partially ordered relation \(\leq \) on \(Y \).](image)

Table 1: Descriptions for notations

<table>
<thead>
<tr>
<th>Notations</th>
<th>Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(X)</td>
<td>Poset</td>
</tr>
<tr>
<td>(P\mathcal{T}(X))</td>
<td>The monoid of all partial transformations of (X)</td>
</tr>
<tr>
<td>(T(X))</td>
<td>The monoid of all full transformations of (X)</td>
</tr>
<tr>
<td>(I(X))</td>
<td>The inverse monoid of all full injective transformations of (X)</td>
</tr>
<tr>
<td>(P\mathcal{I}(X))</td>
<td>The inverse monoid of all partial injective transformations of (X)</td>
</tr>
<tr>
<td>(P\mathcal{O}(X))</td>
<td>The set of all partial order-preserving transformations of (X)</td>
</tr>
<tr>
<td>(O(X))</td>
<td>The monoid of all full order-preserving transformations of (X)</td>
</tr>
<tr>
<td>(X^1)</td>
<td>The upper closure of (X).</td>
</tr>
<tr>
<td>(\text{dom}(f)')</td>
<td>({ \text{dom}(f) })</td>
</tr>
<tr>
<td>(\text{im}(f)')</td>
<td>({ \text{im}(f) })</td>
</tr>
<tr>
<td>(P\mathcal{O}'(X))</td>
<td>({ f \in P\mathcal{O}(X)</td>
</tr>
<tr>
<td>(P\mathcal{O}E'(X))</td>
<td>({ f \in P\mathcal{O}E(X)</td>
</tr>
<tr>
<td>(IP\mathcal{O}'(X))</td>
<td>({ f \in IP\mathcal{O}'(X)</td>
</tr>
</tbody>
</table>

Notations:

- **\(X \):** Poset
- **\(P\mathcal{T}(X) \):** The monoid of all partial transformations of \(X \)
- **\(T(X) \):** The monoid of all full transformations of \(X \)
- **\(I(X) \):** The inverse monoid of all full injective transformations of \(X \)
- **\(P\mathcal{I}(X) \):** The inverse monoid of all partial injective transformations of \(X \)
- **\(P\mathcal{O}(X) \):** The set of all partial order-preserving transformations of \(X \)
- **\(O(X) \):** The monoid of all full order-preserving transformations of \(X \)
- **\(X^1 \):** The upper closure of \(X \)
- **\(\text{dom}(f)' \):** \(\{ \text{dom}(f) \} \)
- **\(\text{im}(f)' \):** \(\{ \text{im}(f) \} \)
- **\(P\mathcal{O}'(X) \):** \(\{ f \in P\mathcal{O}(X) | \text{dom}(f)' = \text{dom}(f) \} \)
- **\(P\mathcal{O}E'(X) \):** \(\{ f \in P\mathcal{O}E(X) | \text{im}(f)' = \text{im}(f) \} \)
- **\(IP\mathcal{O}'(X) \):** \(\{ f \in IP\mathcal{O}'(X) | f \) is an order embedding, \(\text{im}(f)' = \text{im}(f) \) |
2 Ordered partial transformations of a poset

Let \((X, \leq)\) be a poset and equip \(\mathcal{P}(X)\) with the following pointwise order relation:

\[
\forall f, g \in \mathcal{P}(X), f \leq g \iff \text{dom}(f) \subseteq \text{dom}(g), \quad \text{and} \quad \forall x \in \text{dom}(f), xf \leq xg.
\]

The next example shows that \(\langle \mathcal{P}(X), \leq \rangle\) is not, in general, a pomonoid.

Example 2.1. Let \(X = \{a, b, c\}\) be a poset with the partial order \(\leq_3\) as in Figure 3.

Our task is to show that the monoid \(\langle \mathcal{P}(X), \leq \rangle\) is not a pomonoid. Let \(f = \begin{pmatrix} a & b & c \\ a & a & a \end{pmatrix}\), \(g = \begin{pmatrix} a \\ b \end{pmatrix}\), and \(h = \begin{pmatrix} b \\ b \end{pmatrix}\).

One can easily check that all these mappings are in \(\mathcal{P}(X)\). However, \(\leq \) is not compatible with the composition. Indeed, we have \(g \leq f\) but \(gh \not\leq fh\) since \(\text{dom}(gh) = \{a\} \not\subseteq \text{dom}(fh) = \emptyset\). Therefore, \(\mathcal{P}(X)\) with the pointwise order is not a pomonoid (Figure 3).

It is worth noting that in the previous example, we have \(\text{dom}(h)^\dagger = \{a, b\} \supseteq \text{dom}(h) = \{b\}\). So, Example 2.1 encourages us to add some conditions in order to equip the monoid \(\mathcal{P}(X)\) with a pomonoid structure. To this end, let us consider the following set:

\[\mathcal{P}'(X) = \{f \in \mathcal{P}(X)|\text{dom}(f)^\dagger = \text{dom}(f)\} .\]

The set \(\mathcal{P}'(X)\) will be called the set of *ordered partial transformations* of \(X\). It is obvious that the identity map \(1_X \in \mathcal{P}'(X)\). We start our investigation with the following straightforward lemma. We include a proof for the sake of completeness.

Lemma 2.2. Let \(f \in \mathcal{P}(X)\). Then, \((Yf^{-1})^\dagger \subseteq (Y')f^{-1}\) for any \(Y \subseteq \text{im}(f)\).

Proof. Let \(x \in (Yf^{-1})^\dagger\). Then, there exists \(a \in Yf^{-1}\) such that \(a \leq x\). As \(f\) is an order-preserving map, then \(af \leq xf\). But \(af \in Y\). This implies that \(xf \in Y^\dagger\) and so \(x \in (Y')f^{-1}\). This completes the proof. \(\Box\)

The following lemma is straightforward.

Lemma 2.3. Let \(f, h \in \mathcal{P}(X)\). If \(f \leq g\), then \(hf \leq hg\).

Theorem 2.4. \(\langle \mathcal{P}'(X), \leq \rangle\) is a pomonoid.

Proof. First of all, we need to show that \(\mathcal{P}'(X)\) is a monoid. To this end, let \(f, g \in \mathcal{P}'(X)\). Then, \(\text{dom}(f)^\dagger = \text{dom}(f)\) and \(\text{dom}(g)^\dagger = \text{dom}(g)\). Thus,

\[
\text{dom}(fg)^\dagger = ((\text{dom}(g) \cap \text{im}(f))f^{-1})^\dagger = (\text{dom}(g)^\dagger f^{-1} \cap (\text{im}(f)^{f^{-1}})^\dagger = (\text{dom}(g)^\dagger f^{-1} \cap (\text{im}(f)^{f^{-1}})^\dagger = \text{dom}(fg).
\]

Thus, \(\text{dom}(fg) = \text{dom}(fg)^\dagger\). This shows that \(\mathcal{P}'(X)\) is a submonoid of \(\mathcal{P}(X)\) and hence a monoid.

\[
\begin{array}{c}
\text{Figure 3: Partial ordered relation } \leq_3 \text{ on } X.
\end{array}
\]
Next, we show that \leq is compatible with the composition in $\mathcal{PO}(X)$. Let $f, g, h \in \mathcal{PO}(X)$ such that $f \leq g$. Our task is to show that $fh \leq gh$ and $hf \leq hg$. Let $x \in \text{dom}(fh) = (\text{dom}(h) \cap \text{im}(f))^{-1}$. Then, $x \in \text{dom}(f)$ and $xf \in \text{dom}(h)$. As $xf \leq xg$, then $xg \in \text{dom}(h)$. But $\text{dom}(h) \subseteq \text{dom}(h)$, which yields that $xg \in \text{dom}(h)$. Hence, $xg \in (\text{dom}(h) \cap \text{im}(g))^{-1} = \text{dom}(gh)$. Therefore, $\text{dom}(fh) \subseteq \text{dom}(gh)$. Now, using the fact that h is an order-preserving map and $f \leq g$, we obtain readily $x(fh) \leq x(gh)$ for any $x \in \text{dom}(fh)$. Therefore, $fh \leq gh$. For $hf \leq hg$, it follows directly from Lemma 2.3. □

3 Order-embedding partial transformations of a poset

In this section, we consider the following monoid:

$$\mathcal{P}I(X) = \{ f \in \mathcal{P}T(X) \mid f \text{ is injective} \} = \mathcal{P}T(X) \cap I(X).$$

We set

$$\mathcal{POE}(X) = \{ f \in \mathcal{P}T(X) \mid f \text{ is an order embedding} \}$$

and

$$\mathcal{POE}'(X) = \{ f \in \mathcal{POE}(X) \mid \text{im}(f)^{-1} = \text{im}(f) \}.$$

The subset $\mathcal{POE}(X)$ of $\mathcal{P}I(X)$ is also a monoid and this is clear from the definition of $\mathcal{POE}(X)$. Moreover, $\mathcal{POE}'(X) = \mathcal{PO}(X) \cap \mathcal{POE}'(X)$. In this section, we consider the order version of the inverse monoid of all partial injective transformations of X.

Proposition 3.1. The set $\mathcal{POE}'(X)$ is a monoid.

Proof. It is clear that $\mathcal{POE}'(X)$ is a subset of the monoid $\mathcal{P}I(X)$. Let $f, g \in \mathcal{POE}'(X)$. We need to show that $fg \in \mathcal{POE}'(X)$. It is clear that $fg \in \mathcal{POE}(X)$. Let $x \in \text{im}(fg)$, then $x \in \text{im}(g)^{-1}$, which yields that $x \in \text{dom}(g)^{-1}$. It is easy to check that $x \in \text{im}(g)^{-1}$. Thus, there exists $y \in (\text{im}(f) \cap \text{dom}(g))^{-1}$ such that $x \leq y$. Write $y = ag$ for some $a \in \text{im}(f) \cap \text{dom}(g)$, and let $d \in \text{dom}(f)$ such that $a = df$. As $ag \leq x$, then $x \in \text{im}(g)^{-1}$. But, by assumption, $\text{im}(g) = \text{im}(g)^{-1}$, so $x = bg$ for some $b \in \text{dom}(g)$. Now, we obtain $ag \leq bg$. Since, g is an order-embedding, we infer that $a \leq b$. But, $a \in \text{im}(f)$. So $b \in \text{im}(f)^{-1}$. Hypothetically, $\text{im}(f)^{-1} = \text{im}(f)$. Thus, $b = cf$ for some $c \in \text{dom}(f)$. It follows that $x = c(fg) \in \text{im}(f) \cap \text{dom}(g)^{-1} = \text{im}(fg)$. Therefore, $\text{im}(fg) \subseteq \text{im}(fg)$. As the reverse inclusion is always true, we conclude that $\text{im}(fg)^{-1} = \text{im}(fg)$. This completes the proof. □

From the previous proposition, we can have the following result.

Corollary 3.2. $\mathcal{POE}'(X)$ is a submonoid of $\mathcal{POE}(X)$.

Theorem 3.3. The following hold true:

1. $\mathcal{P}O(X)$ is a subpomonoid of $\mathcal{PO}(X)$.
2. $\mathcal{P}O(X)$ is a submonoid of $I(X)$.

Proof.

1. Clearly, $\mathcal{P}O(X) \subseteq \mathcal{POE}'(X)$. Using Proposition 3.1, it is easy to show that $\mathcal{P}O(X)$ is a submonoid of $\mathcal{POE}'(X)$. Using similar argument to Theorem 2.4, we can show that $fh \leq gh$ and $hf \leq hg$ for every $f \leq g$ and $f, g, h \in \mathcal{P}O(X)$.

2. It is clear by using similar argument as in case 1. □
Theorem 3.4. \(IPO(X) \) is an inverse pomonoid.

Proof. Let \(f \in IPO(X) \). Then, \(f \) is an order-embedding map, \(\text{dom}(f) = \text{dom}(f)^\uparrow \) and \(\text{im}(f) = \text{im}(f)^\downarrow \). From Theorem 3.3, we know that \(IPOL(X) \) is a pomonoid and \(IPO(X) \) is a submonoid of \(I(X) \). Hence, there exists \(f^{-1} \in I(X) \). The proof will be completed if we show that \(f^{-1} \in IPO(X) \). It is well known that for any \(\varphi \in I(X) \), \(\text{dom}(\varphi) = \text{im}(\varphi)^\downarrow \) and \(\text{im}(\varphi) = \text{dom}(\varphi)^\uparrow \). As \(f^{-1} \in I(X) \), we obtain immediately \(\text{im}(f^{-1}) = \text{dom}(f) = \text{dom}(f)^\uparrow \) and \(\text{im}(f^{-1}) = \text{im}(f) = \text{im}(f)^\downarrow \). It obvious that \(f^{-1} \) is an order-embedding. Hence, \(f^{-1} \in IPO(X) \). The proof is complete.

Example 3.5. Consider the poset \(X = \{a, b, c\} \) as in Example 2.1. Then, we have

(1) \(PO'(X) = \{a_0 = 0, a_1 = \{a, b, c\}, a_2 = \{a, b, c\}, a_3 = \{a, b, c\}, a_4 = \{a, b, c\}, a_5 = \{a, b, c\}, a_6 = \{a, b, c\}, a_7 = \{a, b, c\}, a_8 = \{a, b, c\}, a_9 = \{a, b, c\}, a_{10} = \{a, b, c\}, a_{11} = \{a, b, c\}, a_{12} = \{a, b, c\}, a_{13} = \{a, b, c\}, a_{14} = \{a, b, c\}, a_{15} = \{a, b, c\}, a_{16} = \{a, b, c\}, a_{17} = \{a, b, c\}, a_{18} = \{a, b, c\}, a_{19} = \{a, b, c\}, a_{20} = \{a, b, c\}, a_{21} = \{a, b, c\}, a_{22} = \{a, b, c\}, a_{23} = \{a, b, c\}, a_{24} = \{a, b, c\}, a_{25} = \{a, b, c\}, a_{26} = \{a, b, c\}, a_{27} = \{a, b, c\}, a_{28} = \{a, b, c\}, a_{29} = \{a, b, c\} \} \)

(2) \(IPO'(X) = \{a_0 = 0, a_1 = \{a, b, c\}, a_2 = \{a, b, c\}, a_3 = \{a, b, c\}, a_4 = \{a, b, c\}, a_5 = \{a, b, c\}, a_6 = \{a, b, c\}, a_7 = \{a, b, c\}, a_8 = \{a, b, c\}, a_9 = \{a, b, c\}, a_{10} = \{a, b, c\}, a_{11} = \{a, b, c\}, a_{12} = \{a, b, c\}, a_{13} = \{a, b, c\}, a_{14} = \{a, b, c\}, a_{15} = \{a, b, c\}, a_{16} = \{a, b, c\}, a_{17} = \{a, b, c\}, a_{18} = \{a, b, c\}, a_{19} = \{a, b, c\}, a_{20} = \{a, b, c\}, a_{21} = \{a, b, c\}, a_{22} = \{a, b, c\}, a_{23} = \{a, b, c\}, a_{24} = \{a, b, c\}, a_{25} = \{a, b, c\}, a_{26} = \{a, b, c\}, a_{27} = \{a, b, c\}, a_{28} = \{a, b, c\}, a_{29} = \{a, b, c\} \} \)

Example 3.6. Let \(X = \{1, 2\} \) with the natural order relation. Then, one can easily check that

(1) \(PO'(X) = \{a_0 = 0, a_1 = \{1, 2\}, a_2 = \{1, 2\}, a_3 = \{1, 2\}, a_4 = \{1, 2\}, a_5 = \{1, 2\} \} \)

(2) \(IPO'(X) = \{a_0 = 0, a_1 = \{1, 2\}, a_2 = \{1, 2\}, a_3 = \{1, 2\}, a_4 = \{1, 2\}, a_5 = \{1, 2\} \} \)

Moreover, the order on \(PO'(X) \) is as in Figure 4.

Example 3.7. Let \(X = \{1, 2, 3\} \) with the natural ordered relation. Then, we have

```
Figure 4: Ordered relation \( \leq \) on \( PO'(X) \).
```
4 Totally ordered poset

In this section, we study \(PO(X) \) and \(IPO(X) \) in case \(X \) is a toset (i.e., a totally ordered set). Note that even when \(X \) is a toset, the aforementioned monoids differ from the semigroup of order-preserving partial transformation which is known in the literature [1–3]. To see this, consider the poset \(X \) in Example 3.6 and note that the mappings \(\{1, 2\} \) and \(\{1, 1\} \) do not belong to \(PO(X) \). However, these maps are elements of the semigroup of order-preserving partial transformation.

Proposition 4.1. Let \(X \) be a finite toset of cardinality \(n \). Then, the following conditions hold true:

1. If \(f \in IPO(X) \), then, \(\text{dom}(f) = \text{im}(f) \) and \(af = a \) for any \(a \in \text{dom}(f) \).
2. \(|IPO(X)| = |X| + 1 \).

Proof.

1. Write \(X = \{a_1 < a_2 < \cdots < a_n\} \) as a chain and let \(f \in IPO(X) \). Since \(\text{dom}(f)^\prime = \text{dom}(f) \) and \(\text{im}(f)^\prime = \text{im}(f) \), then the domain and image of \(f \) will be one of the following sequences: \(X_1 = X, \ldots, X_i = \{a_i < a_{i+1} < \cdots < a_n\}, \ldots, X_{n-1} = \{a_{n-1} < a_n\} \) and \(X_n = \{a_n\} \). Moreover, since \(f \) is an order-embedding and \(X \) is totally ordered, \(af = a \) for any \(a \in \text{dom}(f) \). Therefore, \(\text{dom}(f) = \text{im}(f) = X_i \).

2. It follows from the first assertion that

\[
IPO(X) = \left\{ \begin{array}{c} 0 \\ (a_1 \ a_2 \ \ldots \ \ a_n) \\ \vdots \\ (a_{n-1} \ a_n) \\ (a_n) \end{array} \right\}.
\]

Therefore, \(|IPO(X)| = n + 1 \). This completes the proof. \(\square \)

We derive the following corollary.

Corollary 4.2. Let \(X \) be a finite toset. If \(f \in IPO(X) \) and \(g \in PO(X) \), then \(fg = gf = k \), where \(k \) satisfies the following conditions:

1. \(k \in PO(X) \backslash IPO(X) \).
2. \(\text{dom}(k) \subseteq \text{dom}(g) \).
3. \(ak = ag \) for any \(a \in \text{dom}(k) \).

Remark 4.3.

1. If \(X \) is a finite toset of cardinality \(n \), then \(IPO(X) \subseteq E(PO(X)) \). To see this, we know that

\[
IPO(X) = \left\{ \begin{array}{c} 0 \\ (a_1 \ a_2 \ \ldots \ \ a_n) \\ \vdots \\ (a_{n-1} \ a_n) \\ (a_n) \end{array} \right\}.
\]
Also, it follows from the definition of \(E(\mathcal{PO}'(X))\), that \(IPO'(X) \subseteq E(\mathcal{PO}'(X))\). Take \(f = \begin{bmatrix} a_{n-1} & a_n \\ a_{n-1} & a_{n-1} \end{bmatrix} \in \mathcal{PO}'(X)\). Clearly, \(f \in E(\mathcal{PO}'(X))\), but \(f \not\in IPO'(X)\). This completes the proof.

(2) If \(X\) is a finite toset, then for any \(f \in IPO'(X)\), \(S(f) = \emptyset\).

(3) If \(X\) is a finite toset, then any \(f\) in \(IPO'(X)\) is regressive.

(4) It is worth noting that not every element in \(\mathcal{PO}'(X)\) is regressive. To see this, take \(a_{13} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}\) in Example 3.7. Clearly, \(a_{13}\) is not regressive since \(2a_{13} = 3 \neq 2\).

Theorem 4.4. If \(X\) is a finite toset, then \(IPO'(X)\) is a right and left unitary in \(\mathcal{PO}'(X)\).

Proof. We know from Theorem 3.3 that \(IPO'(X)\) is a subpomonoid of the pomonoid \(\mathcal{PO}'(X)\). According to Corollary 4.2, we have that if \(gf \in IPO'(X)\) for any \(f \in IPO'(X)\) and any \(g \in \mathcal{PO}'(X)\), then \(g \in IPO'(X)\). Therefore, \(IPO'(X)\) is a right unitary in \(\mathcal{PO}'(X)\). In similar way, \(IPO'(X)\) is a left unitary in \(\mathcal{PO}'(X)\).

Remark 4.5.

(1) The pomonoid \(IPO'(X)\) is not an upper strongly right (or left) pounitary in \(\mathcal{PO}'(X)\). To see this, let \(X = \{1, 2, 3, 4\}\). Then,

\[
\begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix} \leq \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 3 & 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}.
\]

(2) The pomonoid \(IPO'(X)\) is not a lower strongly right (or left) pounitary in \(\mathcal{PO}'(X)\). Take, for instance:

\[
\begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} \leq \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}.
\]

Proposition 4.6. If \(X\) is a finite toset, then \(IPO'(X)\) is right reversible.

Proof. As \(0 \in IPO'(X)\), then for all \(a \in IPO'(X)\), we have \(0 \in IPO'(X)\) a. Therefore, \(0 \in IPO'(X)\) a \(\neq \emptyset\). This completes the proof.

Remark 4.7. Consider Example 3.7. It follows from Proposition 4.6 that \(IPO'(X)\) is right reversible.

Proposition 4.8. If \(X\) is a finite toset, then \(IPO'(X)\) is weakly right reversible.

Proof. The conclusion follows directly, from \([21, \text{Theorem 4.6}]\), since the empty map 0 is both a zero and a minimum element.

5 Conclusion

In this article, we found the suitable partially ordered relation, which guarantees that the partial transformation monoid of a poset \(X\) is a pomoind. Also, we described the inverse pomoind from the partial transformation monoid of a poset \(X\). Then, our attention goes to study some properties when \(X\) is a toset.

Acknowledgement: The author would like to thank the reviewers for their careful reading and valuable suggestions.

Funding information: The author declares that there is no funding available for this article.
Conflict of interest: The author states no conflict of interest.

Data availability statement: Not applicable.

References