Research Article

Jinfeng Xue and Libo Wang*

The fiberizing method approach for a Schrödinger-Poisson system with p-Laplacian in bounded domains

https://doi.org/10.1515/math-2024-0015
received October 12, 2023; accepted April 17, 2024

Abstract: In this article, we study a p-Laplacian Schrödinger-Poisson system involving a parameter $q \neq 0$ in bounded domains. By using the Nehari manifold and the fiberizing method, we obtain the non-existence and multiplicity of nontrivial solutions. On one hand, there exists $q^* > 0$ such that only the trivial solution is admitted for $q \in (q^*, +\infty)$. On the other hand, there are two positive solutions existing for $q \in (0, q_0^* + \varepsilon)$, where $\varepsilon > 0$ and $q_0^* + \varepsilon < q^*$. In particular, q^* and q_0^* correspond to the supremum for the nonlinear generalized Rayleigh quotients, respectively. The specific form of the nonlinear generalized Rayleigh quotients is calculated. Moreover, it is worth mentioning that we also obtain the qualitative properties associated with the energy level of the solutions.

Keywords: Schrödinger-Poisson system, variational methods, p-Laplacian, fiberizing method

MSC 2020: 35J20, 35J47, 35J66

1 Introduction

This article studies the following p-Laplacian Schrödinger-Poisson system:

\[
\begin{aligned}
-\Delta u + |u|^{p-2}u + q^2\phi u &= |u|^{p-2}u \quad \text{in } \Omega, \\
-\Delta \phi &= 4\pi u^2 \quad \text{in } \Omega, \\
u = 0, \phi = 0 \quad &\text{on } \partial \Omega,
\end{aligned}
\]

(1.1)

which can be regarded as an extension of the classical Schrödinger-Poisson system

\[
\begin{aligned}
-\Delta u + u + q^2\phi u &= |u|^{p-2}u \quad \text{in } \Omega, \\
-\Delta \phi &= 4\pi u^2 \quad \text{in } \Omega, \\
u = 0, \phi = 0 \quad &\text{on } \partial \Omega,
\end{aligned}
\]

(1.2)

where $\Omega \subset \mathbb{R}^3$ is a bounded domain with smooth boundary, and $2 \leq p < y < 3$.

As we all know, systems similar to (1.2) have been investigated extensively, see [1–5]. In particular, the non-existence and multiplicity of nontrivial solutions of system (1.2) have been proved in [2]. From a physical point of view, systems like (1.2) describe a quantum particle’s interaction with an electromagnetic field in quantum mechanics models [6–8] and semiconductor theory [9,10].

* Corresponding author: Libo Wang, School of Mathematics and Statistics, Beihua University, Jilin, 132013 Jilin, China, e-mail: wlb_math@163.com

Jinfeng Xue: School of Mathematics and Statistics, Beihua University, Jilin, 132013 Jilin, China, e-mail: jinfengxue2023@163.com

Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.
Recently, the \(p \)-Laplacian Schrödinger-Poisson system has received the attention of some authors, see [11,12]. The existence of nontrivial solutions of the \(p \)-Laplacian Schrödinger-Poisson system was obtained by using the mountain pass theorem in [11,12]. Moreover, we find that a type of \(p \)-Laplacian Kirchhoff-Schrödinger-Poisson system is studied on the Heisenberg group in [13], and the existence and multiplicity results for the above systems are established by using the concentration-compactness principle in bounded domains. Hence, inspired by [14], we concentrate on the geometric properties of the solutions by fibered map and Nehari manifold, which is helpful to study the non-existence and multiplicity of nontrivial solutions of system (1.1). As a result, we obtain two solutions which are positive by the maximum principle, when \(q \) is taken in an appropriate range. Meanwhile, we point out that similar results have been obtained in some nonlinear problems in [15–17] as well.

Now, we give the norm of \(\phi \) and \(u \) here and throughout the article: \(\phi \in H^1_0(\Omega) \) with the norm
\[
\|\phi\|_H = \left(\int_\Omega |\nabla \phi|^2 \, dx \right)^{1/2},
\]
and \(u \in W^{1,p}_0(\Omega) \) with the norm
\[
\|u\| = (\|\nabla u\|_p^p + \|u\|_p^p)^{1/p}.
\]
In particular, we denote \(L^p \)-norm by \(|u|_p \). Furthermore, denote the unique solution of the second equation in system (1.1) by \(\phi_u \in H^1_0(\Omega) \) for every \(u \in W^{1,p}_0(\Omega) \), which can be obtained by the Lax-Milgram theorem. Since \(\phi_u \) satisfies
\[
-\Delta \phi_u = 4\pi u^2,
\]
for every \(u \in W^{1,p}_0(\Omega) \), from (1.3) we have
\[
4\pi \int_\Omega \phi_u u^2 = \|\phi_u\|^2_H.
\]
In particular, the integral of the whole article is integrated on \(\Omega \), and we will not specifically speak later.

We represent the unique solution of the second equation of system (1.1) with \(\phi_u \) and bring it into the first equation so that the system reduces to a single equation. Then to solve system (1.1) is equivalent to study the single equation
\[
-\Delta_u + |u|^{p-2}u + q^2 \phi_u u = |u|^{q-2}u \quad \text{in } \Omega,
\]
containing the nonlocal term \(\phi_u \). For these reasons, from now on, whenever we refer to the solution of system (1.1), we merely mean the solution \(u \) of the above equation since \(\phi = \phi_u \) is explicitly determined.

The energy functional
\[
\mathcal{J}_q(u) = \frac{1}{p} |\nabla u|^p + \frac{q^2}{4} \int_\Omega \phi_u u^2 - \frac{1}{p} |u|^p, \quad u \in W^{1,p}_0(\Omega),
\]
which is related to equation (1.5), is well defined and \(C^1 \). Motivated by the above works, we simplify to find critical points of \(\mathcal{J}_q \).

Before presenting theorems explicitly, for simplicity, the results are given and demonstrated only for \(q > 0 \), because no confusion exists here when \(q \) is replaced by \(|q| \). More precisely, the most important result in this article can be stated as follows under the foundation of 2 \(\leq p \leq 3 \) in bounded domains.

Theorem 1.1. Let \(2 \leq p < q < 3 \), there exist positive constants \(\varepsilon, q_*^0, q^* \) satisfying \(q_*^0 + \varepsilon < q^* \) such that:
(1) For \(q > q^* \), the functional \(\mathcal{J}_q \) has no critical points except the zero function in \(W^{1,p}_0(\Omega) \).
(2) For \(q \in (0, q_*^0 + \varepsilon) \), the functional \(\mathcal{J}_q \) has two nontrivial critical points \(u_q, w_q \in W^{1,p}_0(\Omega) \). More specifically,
 (i) If \(q \in (0, q_*^0) \), one is a mountain pass critical point \(w_q \) with
 \[
 \mathcal{J}_q(w_q) > 0.
 \]
The other is a global minimum point \(u_q \) with
\[J_q(u_q) < 0. \]
(ii) If \(q = q_0^* \), one is a mountain pass critical point \(w_{q_0^*} \) with
\[J_q(w_{q_0^*}) > 0. \]
The other is a global minimum point \(u_{q_0^*} \) with
\[J_q(u_{q_0^*}) = 0. \]
(iii) If \(q \in (q_0^*, q_0^* + \epsilon) \), one is a mountain pass critical point \(w_q \) with
\[J_q(w_q) > J_q(u_q). \]
The other is a local minimum point \(u_q \) with
\[J_q(u_q) > 0. \]

In Theorem 1.1, \(q^* \) and \(q_0^* \) are the extreme values of the Nehari manifold method and correspond to the supremum for the nonlinear generalized Rayleigh quotients, respectively (more details for the notion of extremal parameters, see [18]). As Theorem 1.1 shows, we do not state what happens to the solutions when \(q \) between \(q_0^* + \epsilon \) and \(q^* \). Similar to [19], it seems plausible that there exist two positive solutions for \(q \) less than \(q^* \) and close to it, although we have not proved it yet. Furthermore, it is easy to see that whenever \(q = q_0^* \), \(J_{q_0^*} \) is non-negative and we obtain a global minimizer at an energy level of zero. However, extra investigation is required to prove why it does not correspond to the zero function.

Motivated by Ilyasov [18] concerning the so-called extremal value for the application of the Nehari manifold method, this article studies the non-existence and multiplicity of the nontrivial solutions of system (1.1). For this purpose, we introduce the fibering method and Nehari manifolds to find critical points of functional \(J_q \). By presenting the possible situations of the fiber map \(\psi_{q,u}(t) \), the geometry of the functional \(J_q \) is directly determined under different values of parameter \(q \). In particular, we calculate the specific form of the nonlinear generalized Rayleigh quotients introduced in [18], which, to the best of our knowledge, has not yet appeared in other articles for this \(p \)-Laplacian Schrödinger-Poisson system. Moreover, we apply the Mountain pass theorem and Ekeland’s variational principle, and verify that system (1.1) has two nontrivial solutions when \(q \in (0, q_0^* + \epsilon) \) in bounded domains.

This article is organized as follows. In Section 2, we give some preliminaries and technical results. In particular, Theorem 1.1 (1) is proved here. Sections 3–5 are devoted to prove Theorem 1.1 (2) when \(q \) is in different values.

2 Preliminaries and technical results

In this section, we give some necessary preliminaries and technical results.

Lemma 2.1. For fixed \(u \in W^{1,p}_0(\Omega) \), there exists a unique nonnegative solution \(\phi_u \in H^1_0(\Omega) \) solving \(-\Delta \phi = 4\pi u^2\) weakly in \(\Omega \). Moreover, \(\|\phi_u\|_{H^1} \leq C|u|^2 \).

Proof. For each \(u \in W^{1,p}_0(\Omega) \), we define a linear functional \(T : H^1_0(\Omega) \to \mathbb{R} \) by \(T(v) = 4\pi \int u^2 v \). Since the embedding \(W^{1,p}_0(\Omega) \hookrightarrow L^q(\Omega), \; \forall q \in [1, 6) \) is compact, by using Hölder’s inequality and the embedding \(H^1_0(\Omega) \hookrightarrow L^q(\Omega) \), we deduce that
\[|T(v)| \leq 4\pi \left(\int |u|^2 \right)^{\frac{1}{2}} \left(\int |v|^q \right)^{\frac{1}{q}} \leq C|u|^2 \|v\|_{H^1}, \quad (2.1) \]
from which the boundedness of T on $H^1_0(\Omega)$ follows. According to the definition of weak solution of (1.3) and the Lax-Milgram theorem, there exists a unique $\phi_u \in H^1_0(\Omega)$ such that

$$
\int \nabla \phi_u \nabla v = 4\pi \int u^2 v, \quad \forall v \in H^1_0(\Omega).
$$

(2.2)

Therefore, combining (2.1) with (2.2) and choosing $v = \phi_u$, we obtain $|\phi_u|_H \leq C|u|^p$.

\[\square \]

Proposition 2.2. For all $u \in W_0^{1,p}(\Omega)$,

$$
\int |u|^p \leq \frac{1}{4\pi} ||\phi_u||_{H^1_0} ||\nabla u||_2.
$$

\[\square \]

Proof. For each fixed $u \in W_0^{1,p}(\Omega)$, multiplying equation (1.3) by $|u| \in W_0^{1,p}(\Omega)$ and integrating on Ω, using Hölder’s inequality and the embedding $W_0^{1,p}(\Omega) \hookrightarrow H^1_0(\Omega)$, we obtain

$$
4\pi \int |u|^p = \int \nabla \phi_u |u| \leq ||\nabla \phi_u||_{H^1_0} ||\nabla u||_2.
$$

It follows that

$$
\int |u|^p \leq \frac{1}{4\pi} ||\phi_u||_{H^1_0} ||\nabla u||_2.
$$

\[\square \]

Proposition 2.3. There exists $\rho > 0$ and $M > 0$ satisfying

$$
J_q(u) \geq M \text{ for all } q > 0 \text{ and } u \in W_0^{1,p}(\Omega) \text{ with } ||u|| = \rho.
$$

\[\square \]

Proof. The conclusion easily follows from

$$
J_q(u) \geq \frac{1}{p} ||u||^p - \frac{1}{p} ||u||^p \geq \frac{1}{p} ||u||^p - C||u||^p,
$$

(2.3)

where $C > 0$ is the Sobolev embedding constant.

Now, we study the geometry of the functional J_q. Observing $\phi_{tu} = t^2 \phi_u$ and defining $\psi_{q,u}(t) = J_q(tu)$ with $\psi_{q,u} : [0, \infty) \to \mathbb{R}$, we have

$$
\psi_{q,u}(t) = \frac{t^p}{p} ||u||^p + \frac{q^2 t^4}{4} \int \phi_u u^2 - \frac{t^p}{Y} ||u||^p.
$$

For brevity, we will also use the notation $\psi = \psi_{q,u}$ whenever q and u are fixed. A simple analysis is as follows.

Proposition 2.4. For each $q > 0$ and $u \in W_0^{1,p}(\Omega) \setminus \{0\}$, the graph of ψ has three possibilities on $(0, +\infty)$:

(i) The function ψ has two critical points, i.e., $0 < t_q^+ < t_q^-(u)$. Furthermore, $t_q^+(u)$ is a local maximum point with $\psi''(t_q^+(u)) < 0$ and $t_q^-(u)$ is a local minimum point with $\psi''(t_q^-(u)) > 0$.

(ii) The function ψ has one critical point, i.e., $0 < t_q(u)$. Furthermore, $\psi''(t_q(u)) = 0$ and ψ is increasing.

(iii) The function ψ has no critical points and is increasing.

Note that (i) occurs for q small and (iii) for q large (Figure 1). Now, we introduce the Nehari manifolds associated with the functional J_q, namely,

$$
\mathcal{N}_q = \{ u \in W_0^{1,p}(\Omega) \setminus \{0\} : \psi'(1) = 0 \}.
$$

For $u \in \mathcal{N}_q$,

$$
||u||^p \leq ||u||^p + q^2 \int \phi_u u^2 \leq C||u||^p.
$$

(2.4)
Then, we know that
\[\exists \hat{C} > 0 \text{ such that for all } q > 0, \ u \in \mathcal{N}_q \text{ one has } ||u|| \geq \hat{C}, \] (2.5)
that is, all the Nehari manifolds are uniformly bounded away from zero in \(q \).

Moreover, the Nehari set can be divided into three disjoint sets:
\[\mathcal{N}_q = \mathcal{N}_q^+ \cup \mathcal{N}_q^0 \cup \mathcal{N}_q^- \]
where
\[\mathcal{N}_q^+ = \{ u \in \mathcal{N}_q : \psi''(1) > 0 \}, \]
\[\mathcal{N}_q^0 = \{ u \in \mathcal{N}_q : \psi''(1) = 0 \}, \]
\[\mathcal{N}_q^- = \{ u \in \mathcal{N}_q : \psi''(1) < 0 \}. \]

As a result of the implicit function theorem, one obtains:

Proposition 2.5. Consider the disjoint sets:
(i) \(\mathcal{N}_q^+ \), \(\mathcal{N}_q^- \) are \(\mathcal{C}^1 \) manifolds of codimension 1 in \(W_0^{1,p}(\Omega) \) if \(\mathcal{N}_q^+, \mathcal{N}_q^- \) are non-empty;
(ii) \(u \in \mathcal{N}_q^+ \cup \mathcal{N}_q^- \) is a critical point for the functional \(\mathcal{F}_q \), equivalently, \(u \) is a critical point of the constrained functional \((\mathcal{F}_q)|_{\mathcal{N}_q^+ \cup \mathcal{N}_q^-} : \mathcal{N}_q^+ \cup \mathcal{N}_q^- \to \mathbb{R} \).

From the previous discussion, we have \(tu \in \mathcal{N}_q^0 \) for a fixed \(u \in W_0^{1,p}(\Omega) \) if and only if \(\psi_+''(1) = \psi_-''(1) = 0 \).

Indeed, this is equivalent to the system
\[
\begin{align*}
&q^{p-1}||u||^p + q^2 |t|^q = 0, \\
&(p-1)t^{p-2}||u||^p + 3q^2 |t|^q - (y-1)t^{y-2}||u||^y = 0.
\end{align*}
\] (2.6)

After direct calculation, we obtain the unique solution with respect to the variables \(q \) and \(t \), which are
\[
t(u) = \frac{(4 - p)||u||^p}{(4 - y)||u||^y},
\]
and
\[
q(u) = C_p \frac{\mu^{(4-p)}}{||u||^{(4-p)y}||\phi_u||_H}, \quad (2.7)
\]
where

\[
C_p = \left\{ \left[\frac{4 - p}{4 - y} \right]^{\frac{4 - y}{p}} \left(\frac{4 - p}{4 - y} \right)^{\frac{p - 4}{2p}} \right\}^{\frac{1}{2}}.
\]

(2.8)

In particular, there exists a connection between \(q \) and \(t \),

\[
t(u) = \left\{ \frac{q^2(u) \| \phi_u \|_{L^2}^2}{C \| u \|_{L^p}^p} \right\}^{\frac{1}{2}},
\]

where \(C \) is a positive constant. Now, we define the extremal value

\[
q^* = \sup \{ q(u) : u \in W_0^{1,p}(\Omega) \setminus \{0\} \}.
\]

Lemma 2.6. The function \(W_0^{1,p}(\Omega) \setminus \{0\} \ni u \mapsto q(u) \) defined in (2.7) is 0-homogeneous. Moreover, \(q^* < \infty \).

Proof. It is obvious that \(q(u) \) is 0-homogeneous. Next, we prove \(q^* < \infty \). In fact, from the interpolation inequality for \(\gamma \in (2, 3) \), we obtain

\[
\| u \|_{L^p(\Omega)}^p \leq \| u \|_{L^2(\Omega)}^2 \| u \|_{L^{2(p-2)/(p-4)}}^{2(p-2)/(p-4)}
\]

(2.9)

for all \(u \in W_0^{1,p}(\Omega) \). From Proposition 2.2 and \(W_0^{1,p}(\Omega) \hookrightarrow H_0^2(\Omega), L^p(\Omega) \hookrightarrow L^2(\Omega) \), we have

\[
\| u \|_{L^p(\Omega)}^p \leq \| u \|_{L^2(\Omega)}^2 \| u \|_{L^{2(p-2)/(p-4)}}^{2(p-2)/(p-4)}
\]

\[
\leq C \| u \|_{L^2(\Omega)}^{2(3-2)/(3-4(p-2))} \| u \|_{L^{2(p-2)/(p-4)}}^{2(p-2)/(p-4)}
\]

(2.10)

\[
\leq C \| u \|_{L^{(4-2p)/(p-4)}}^{(3-2)/(3-4(p-2))} \| u \|_{L^{(4-2p)/(p-4)}}^{(3-2)/(3-4(p-2))},
\]

for some constant \(C > 0 \). Consequently, according to Lemma 2.1 and the definition of \(q(u) \), we conclude that

\[
q(u) \leq C \| u \|_{L^{(4-2p)/(p-4)}}^{(3-2)/(3-4(p-2))} \| u \|_{L^{(4-2p)/(p-4)}}^{(3-2)/(3-4(p-2))}.
\]

(2.11)

On the contrary, we have another extremal value which is crucial in the following proof. Under this circumstance, the functional \(J_q \) is always non-negative. Let us begin by fixing \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \) and taking the following system into consideration:

\[
\begin{aligned}
\psi_{q_0,t}(t_0) &= \frac{t_0^p}{p} \| u \|^p + \frac{q_0^4 t_0^4}{4} \int \phi_u t_0^2 - \frac{t_0}{y} \| u \|_{L^y}^y = 0, \\
\psi_{q_0,t'}(t_0) &= t_0^{p-1} \| u \|^p + \frac{q_0^2 t_0^3}{3} \int \phi_u t_0^2 - t_0^{y-1} \| u \|_{L^y}^y = 0.
\end{aligned}
\]

(2.11)

With regard to the variables \(t_0 \) and \(q_0 \), we give the unique solution

\[
t_0(u) = \left\{ \frac{\gamma(4 - p) \| u \|^p}{p(4 - y) \| u \|_{L^y}^y} \right\}^{\frac{1}{p}}.
\]
and
\[q_0(u) = C_{0,p} \frac{\| u \|^{\gamma(4-p)}}{\| \phi_u \|_H^{\gamma(p-4)}}, \tag{2.12} \]
where
\[C_{0,p} = \left(\frac{\gamma(4-p)}{p(4-\gamma)} \right)^{\frac{\gamma-4}{p-4}} + \left(\frac{\gamma(4-p)}{p(4-\gamma)} \right)^{\frac{\gamma-4}{p-4}} \frac{4\pi}{\gamma(p-4)} \right)^{\frac{1}{p}}. \tag{2.13} \]

In particular, there exists a connection between \(q_0 \) and \(t_0 \),
\[t_0(u) = \frac{q_0^2(u) \| \phi_u \|_H^2}{C \| u \|^p} \]
where \(C \) is a positive constant. Observe that \(C_{0,p} < C_p \), where \(C_p \) is the one shown in (2.8). After that, \(q_0(u) < q(u) \). The extremal value was described as
\[q_0^* = \sup \{ q_0(u) : u \in W^{1,p}_0(\Omega) \setminus \{0\} \}. \]

Remark 1. Since \(q_0(u) \) is a multiple of \(q(u) \), Lemma 2.6 also holds true for the function \(q_0(u) \).

Proposition 2.7. There exists a positive constant \(m \) such that
\[\mathcal{J}_q(u) \geq m \quad \text{for all } q > 0, u \in \mathcal{N}_q. \]

Proof. Using equation (2.6) and taking \(t = 1 \), we can deduce that
\[
\begin{align*}
\| u \|^p + q^2 \int \phi_u u^2 - \| u \|_p^p &= 0, \\
(\gamma - 1)\| u \|^p + 3q^2 \int \phi_u u^2 - (\gamma - 1)\| u \|_p^p &= 0.
\end{align*}
\]

It follows that
\[q^2 \int \phi_u u^2 = \| u \|_p^p - \| u \|_p^p \quad \text{and } \quad \| u \|_p^p = \frac{p - 4}{\gamma - 4}\| u \|^p. \]

Then, we have \(\mathcal{J}_q(u) = \frac{(4-p)(\gamma-p)}{4p^2}\| u \|^p \) for each \(u \in \mathcal{N}_q^0 \). Hence, we complete the proof by (2.5).

Lemma 2.8. Consider the operator \(\Phi : W^{1,p}_0(\Omega) \to H_0^1(\Omega), \Phi(u) = \phi_u \), that is, the solution of the problem
\[-\Delta \phi_u = 4\pi u^2 \quad \text{in } H_0^1(\Omega). \]
Let \(u_n \) be a sequence satisfying \(u_n \to u \) in \(W^{1,p}_0(\Omega) \). Then, \(\phi_{u_n} \to \phi_u \) in \(H_0^1(\Omega) \) and, as a consequence,
\[\int \phi_{u_n} u_n^2 \to \int \phi_u u^2. \]

Proof. Define the linear operators \(T_n, T : H_0^1(\Omega) \to \mathbb{R} \) by
\[T_n(v) = 4\pi \int u_n^2 v, \quad T(v) = 4\pi \int u^2 v. \]
Recall that the embedding \(W^{1,p}_0(\Omega) \) into \(L^\lambda(\Omega) \) is compact for \(1 \leq \lambda < 6 \). Then
\[\int |u_n^2 - u^2|^2 = \int |u_n^2| |u_n - u|^2 \leq \left(\int |u_n^2| \right)^{1/2} \left(\int |u_n - u|^2 \right)^{1/2}, \]
hence $u_n^2 \to u^2$ in $L^\frac{5}{2}$. Note that

$$|T_n(v) - T(v)| \leq 4\pi \left(\int |u_n^2 - u^2|^\frac{q}{2} \right)^{\frac{1}{q}} \left(\int |v|^p \right)^{\frac{1}{p}} \leq 4\pi |u_n^2 - u^2||v||H,$$

which means T_n converges strongly to T.

From (1.3), we obtain that

$$\int \nabla \phi \nabla v = 4\pi \int u^2 v, \quad \forall v \in H_0^1(\Omega), \quad (2.15)$$

$$\int \nabla \phi \nabla v = 4\pi \int u_n^2 v, \quad \forall v \in H_0^1(\Omega). \quad (2.16)$$

Subtracting (2.15) from (2.16) and choosing $v = \phi_{u_n} - \phi_u$, we obtain

$$||\phi_{u_n} - \phi_u||^2_H = 4\pi \int \left(u_n^2 - u^2 \right) (\phi_{u_n} - \phi_u)$$

$$\leq 4\pi \left(\int |u_n^2 - u^2|^\frac{q}{2} \right)^{\frac{1}{q}} \left(\int |(\phi_{u_n} - \phi_u)|^p \right)^{\frac{1}{p}}$$

$$\leq 4\pi |u_n^2 - u^2||\phi_{u_n} - \phi_u||H.$$

Hence, $\phi_{u_n} \to \phi_u$ in $H_0^1(\Omega)$.

Conversely, observing that $\phi_{u_n} \to \phi_u$ in $L^6(\Omega)$ and $u_n^2 \to u^2$ in $L^\frac{5}{2}$, we have

$$\left| \int \phi_{u_n} u_n^2 - \int \phi_u u^2 \right| = \left| \int \phi_{u_n} u_n^2 - \int \phi_{u_n} u^2 + \int \phi_{u_n} u^2 - \int \phi_u u^2 \right|$$

$$\leq \left| \int \phi_{u_n} u_n^2 - \int \phi_{u_n} u^2 \right| + \left| \int \phi_{u_n} u^2 - \int \phi_u u^2 \right|$$

$$\leq \left(\int |u_n^2 - u^2|^\frac{q}{2} \right)^{\frac{1}{q}} \left(\int |(\phi_{u_n} - \phi_u)|^p \right)^{\frac{1}{p}} + \left(\int |u^2|^\frac{q}{2} \right)^{\frac{1}{q}} \left(\int |(\phi_{u_n} - \phi_u)|^p \right)^{\frac{1}{p}}$$

$$\leq C|u_n^2 - u^2||\phi_{u_n}||H + C|u|^\frac{q}{2}||\phi_{u_n} - \phi_u||H \to 0, \quad (2.17)$$

then we conclude $\int \phi_{u_n} u_n^2 \to \int \phi_u u^2$.

Lemma 2.9. The functional $\mathcal{J}_d(u)$ satisfies the following properties:

1. $\mathcal{J}_d(u)$ is weakly lower semi-continuous and coercive.
2. $\mathcal{J}_d(u)$ satisfies the Palais-Smith condition.

Proof. To prove (1), we take $u_n \rightharpoonup u$ and then by using the compactness of the Sobolev embedding, Brezis-Lieb’s lemma, and Lemma 2.8, we obtain

$$\int |u_n|^p \to \int |u|^p, \quad \int \phi_{u_n} u_n^2 \to \int \phi_u u^2.$$

It follows that $\mathcal{J}_d(u)$ is w.l.s.c.

Conversely, we begin to prove that $\mathcal{J}_d(u)$ is coercive. By using Hölder’s inequality, Young’s inequality, and Proposition 2.2, we obtain

$$||u||^2_H \leq \frac{1}{4\pi} \left| \text{meas}(\Omega) \right|^{\frac{1}{2}} ||\nabla \phi_u||_2 ||\nabla u||_p$$

$$\leq \frac{1}{4\pi} \left[\frac{1}{\tau} \left| \text{meas}(\Omega) \right| + \frac{1}{pe^p} ||\nabla u||^p + \frac{1}{2} e^\frac{q}{2} ||\phi_u||_1^2 \right]$$

$$= \frac{1}{4\pi} \left[\frac{1}{\tau} \left| \text{meas}(\Omega) \right| + \frac{1}{pe^p} ||\nabla u||^p + \frac{1}{2} e^\frac{q}{2} ||\phi_u||_1^2 \right], \quad (2.18)$$
where
\[
\frac{1}{r} + \frac{1}{p} + \frac{1}{2} = 1,
\]

\[
\tau = \frac{2p}{p+2} \in (6, +\infty)
\]
because of \(p \in (2, 3) \).

We take \(D_q = \frac{q^2}{16\pi} - \frac{e^{p+2}}{4} > 0 \) such that

\[
\mathcal{F}_q(u) = \frac{1}{2p}||\nabla u||_{p}^p + \frac{1}{p}||u||_{p}^p + \frac{q^2}{4} \int \phi_u u^2 - \frac{1}{y} ||u||_{p}^y
\]
\[
\geq \frac{1}{2p}||\nabla u||_{p}^p + \left(\frac{q^2}{16\pi} - \frac{e^{p+2}}{4} \right) \|\phi_u\|_{L^2}^2 + \frac{1}{p}||u||_{p}^p + 2\pi e^p ||u||_{L^2}^3 - \frac{1}{y} ||u||_{p}^y - \frac{e^p |\Omega|}{2\tau} \tag{2.19}
\]

where

\[
f(t) = \frac{1}{2p}t^p + 2\pi e^p t^3 - \frac{1}{y} t^y
\]

for all \(t > 0 \).

A simple analysis shows that \(I = \inf_{I > 0} f(t) > -\infty \) and if \(f(t) < 0 \) for some \(t > 0 \), then \(f^{-1}((\infty, 0)) = (a, \beta) \), where \(0 < a < \beta < \infty \).

If \(I \geq 0 \), since \(D_q > 0 \) we conclude from (2.19) that

\[
\mathcal{F}_q(u) \geq \frac{1}{2p}||u||^p - \frac{e^p |\Omega|}{2\tau} + D_q ||\phi_u||_{L^2}^2 \geq \frac{1}{2p}||u||^p - C. \tag{2.20}
\]

If \(I < 0 \), then

\[
\mathcal{F}_q(u) \geq \frac{1}{2p}||u||^p - \frac{e^p |\Omega|}{2\tau} + D_q ||\phi_u||_{L^2}^2 + I\text{meas}(A) \geq \frac{1}{2p}||u||^p - C, \tag{2.21}
\]

where \(A = \{ x \in \Omega : u(x) \in (a, \beta) \} \). Hence, \(\mathcal{F}_q(u) \) is coercive.

Now, we begin to prove that \(u_n \) admits a converging subsequence. By the boundedness and coercivity of \(\mathcal{F}_q(u) \), it is clear that \(u_n \) is also bounded. Thanks to the boundedness of \(\{u_n\} \), there exists \(u_0 \in W_0^{1,p}(\Omega) \) such that, up to subsequences, \(u_n \rightharpoonup u_0 \) in \(W_0^{1,p}(\Omega) \), then \(u_n \rightarrow u_0 \) in \(L^q(\Omega) \), \(1 \leq \lambda < 6 \) because of the previous compact embedding. We evaluate

\[
\langle \mathcal{F}_q(u_n), u_n - u \rangle = \int \nabla u_n \nabla \nabla (u_n - u) + \int |u_n|^{p-2} u_n (u_n - u) + q^2 \int \phi_{u_n} u_n (u_n - u) - \int |u_n|^{p-2} u_n (u_n - u).
\]

By using Hölder's inequality, we have:

\[
\int \phi_{u_n} u_n (u_n - u) \leq \|\phi_{u_n}\|_3 \|u_n\|_3 \|u_n - u\|_3.
\]

By Lemma 2.1, the above expression tends to zero as \(n \rightarrow \infty \). Moreover,

\[
\int |u_n|^{p-2} u_n (u_n - u) \rightarrow 0, \int |u_n|^{p-2} u_n (u_n - u) \rightarrow 0.
\]

Then

\[
\int \nabla u_n \nabla (u_n - u) \rightarrow 0.
\]

Finally, we conclude \(u_n \rightarrow u \) in \(W_0^{1,p}(\Omega) \).
Remark 2. Lemma 2.9 can be generalized as follows: depending on the smooth dependence of \(J_q \) on \(q \), we obtain the conclusion that if \(q_n \to q \) and \(\{u_n\} \subset W_0^{1,p}(\Omega) \) is a sequence such that \(J_q(u_n) \to 0 \) as \(n \to +\infty \), then \(\{u_n\} \) is convergent, up to subsequences.

Finally, we give the following geometrical interpretations of \(q(u) \) and \(q_0(u) \), which can be easily derived by Proposition 2.4.

Proposition 2.10. For each \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \), \(q > 0 \), there holds

(i) The fiber map \(\psi \) has a critical point with second derivative zero at \(t(u) \). Furthermore, if \(0 < q < q(u) \), then \(\psi \) corresponds to Proposition 2.4 (i) while if \(q > q(u) \), \(\psi \) corresponds to Proposition 2.4 (iii).

(ii) The fiber map \(\psi \) has a critical point with zero energy at \(t_0(u) \). Furthermore, if \(0 < q < q_0(u) \), \(\inf_{t>0} \psi(t) < 0 \) while if \(q > q_0(u) \), \(\inf_{t>0} \psi(t) = 0 \).

In addition, the parameter \(q_0^* \) possesses such a geometric interpretation that when \(0 < q < q_0^* \), \(J_q(u) < 0 \) for at least one \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \) while \(q \geq q_0^* \), \(J_q(u) \geq 0 \) for all \(u \in W_0^{1,p}(\Omega) \). It is a consequence that small values \(q \) are necessary to prove the existence of a function with a negative value, such that \(J_q \) has a mountain pass geometry.

Corollary 2.11. If \(q \geq q_0^* \), then \(J_q \geq 0 \) for all \(u \in W_0^{1,p}(\Omega) \). Moreover, if \(q < q_0^* \), then there exists \(u \in W_0^{1,p}(\Omega) \) such that \(J_q < 0 \).

Proof. In fact, assume that \(q \geq q_0^* \). Deriving from Proposition 2.10 (ii), we obtain \(\inf_{t>0} \psi(t) = 0 \). This means that when \(q > q_0(u) \) for each \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \), we have \(J_q(u) \geq 0 \). Conversely, suppose that \(q < q_0^* \). According to the definition of \(q_0^* \), there exists \(w \in W_0^{1,p}(\Omega) \setminus \{0\} \) such that \(q < q_0(w) < q_0^* \). Consequently, we deduce from Proposition 2.10 (ii) that \(\inf_{t>0} \psi(t) < 0 \) and then there exists \(t > 0 \) such that if \(u = tw \), \(J_q < 0 \).

Corollary 2.12. If \(q > q^* \), the functional \(J_q \) has no critical points except the zero function. Moreover, if \(q < q^* \), then \(\mathcal{N}_q \neq \emptyset \) and \(\mathcal{N}_q^+ \neq \emptyset \).

Proof. It suffices to prove that the function \(\psi \) has no critical points when \(q > q^* \) for each \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \). Actually, due to the inequality \(q(u) \leq q^* < q \) and Proposition 2.10 (i), we can obtain the conclusion easily. Now, assume that \(q < q^* \). According to the definition of \(q^* \), there exists \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \) such that \(q < q(u) < q^* \). As a result, we deduce from Proposition 2.10 (i) that \(\mathcal{N}_q \neq \emptyset \) and \(\mathcal{N}_q^+ \neq \emptyset \).

In particular, Theorem 1.1 (1) has been proved here.

3 Existence of solutions for \(q \in (0, q_0^*) \)

In this section, we will prove Theorem 1.1 (2) (i).

(i) The global minimum solution

Proposition 3.1. For each \(q \in (0, q_0^*) \), \(-\infty < \inf_{u \in W_0^{1,p}(\Omega)} J_q(u) < 0 \).

Proof. From Corollary 2.11, we know that

\[
\inf_{u \in W_0^{1,p}(\Omega)} J_q(u) < 0.
\]

In fact, assume that \(q \geq q_0^* \). Deriving from Proposition 2.10 (ii), we obtain \(\inf_{t>0} \psi(t) = 0 \). This means that when \(q > q_0(u) \) for each \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \), we have \(J_q(u) \geq 0 \). Conversely, suppose that \(q < q_0^* \). According to the definition of \(q_0^* \), there exists \(w \in W_0^{1,p}(\Omega) \setminus \{0\} \) such that \(q < q_0(w) < q_0^* \). Consequently, we deduce from Proposition 2.10 (ii) that \(\inf_{t>0} \psi(t) < 0 \) and then there exists \(t > 0 \) such that if \(u = tw \), \(J_q < 0 \).

Corollary 2.12. If \(q > q^* \), the functional \(J_q \) has no critical points except the zero function. Moreover, if \(q < q^* \), then \(\mathcal{N}_q \neq \emptyset \) and \(\mathcal{N}_q^+ \neq \emptyset \).

Proof. It suffices to prove that the function \(\psi \) has no critical points when \(q > q^* \) for each \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \). Actually, due to the inequality \(q(u) \leq q^* < q \) and Proposition 2.10 (i), we can obtain the conclusion easily. Now, assume that \(q < q^* \). According to the definition of \(q^* \), there exists \(u \in W_0^{1,p}(\Omega) \setminus \{0\} \) such that \(q < q(u) < q^* \). As a result, we deduce from Proposition 2.10 (i) that \(\mathcal{N}_q \neq \emptyset \) and \(\mathcal{N}_q^+ \neq \emptyset \).
Now, we prove \(-\infty < \inf_{u \in W_0^{1,p}(\Omega)} J_q(u)\). By contradiction, we assume that there exists a sequence \(\{u_n\}\) such that \(J_q(u_n) \to -\infty\) as \(n \to +\infty\), then \(|u_n| \to +\infty\) because of (2.3). Without loss of generality, we can infer from (2.21) that
\[
\frac{1}{2p}||u_n||^p \leq J_q(u_n) + \frac{e^{|\Omega|}}{2\tau} - I\text{meas}(A_n),
\]
where \(A_n \subset \Omega\). There is no doubt that it is a contradiction here. \(\square\)

Proposition 3.2. For \(q \in (0, q_0^*)\), there exists a global minimum \(u_q\) such that \(J_q(u_q) < 0\).

Proof. The conclusion can be easily proved by using Proposition 3.1 and Ekeland’s variational principle. \(\square\)

(ii) The mountain pass solution

Define
\[
c_q = \inf_{y \in \Gamma_q} \max_{t \in [0,1]} J_q(y(t)) > 0,
\]
where
\[
\Gamma_q = \{y \in C([0,1], W_0^{1,p}(\Omega)) : y(0) = 0, J_q(y(1)) < 0\}.
\]
Thanks to Corollary 2.11, \(\Gamma_q\) is non-empty. The following proposition is deduced from Proposition 2.3 and Lemma 2.9.

Proposition 3.3. For each \(q \in (0, q_0^*)\), there exists \(u_q \in W_0^{1,p}(\Omega)\) such that \(J_q(u_q) = c_q\) and \(J_q'(u_q) = 0\). Particularly, \(J_q'(u_q) > J_q'(u) \in (-\infty, 0)\).

4 Existence of solutions for \(q = q_0^*\)

In this section, we will prove Theorem 1.1 (2) (ii).

(i) The global minimum solution

Corollary 4.1. There exists a global minimum point \(u_{q_0^*} \neq 0\) of \(J_{q_0^*}\) such that \(J_{q_0^*}(u_{q_0^*}) = 0\).

Proof. Assume that \(q_n \uparrow q_0^*\) as \(n \to \infty\). For each \(n\), there exists \(u_n = u_{q_n}\), which is a global minimum for \(J_{q_n}\) and \(J_{q_n}(u_n) < 0\) from Proposition 3.2. Then, we have \(J_{q_n}'(u_n) = 0\) for each \(n\). Conversely, observing all the Nehari manifolds are bounded away from zero uniformly in \(q\), we have \(|u_n| \geq \tilde{C}\) for each \(n\). Moreover, we conclude that \(u_n \to u \neq 0\) from Remark 2. Since \(J_{q_n}(u_n) < 0\) for each \(n\), passing to the limit as \(n \to \infty\), we obtain \(J_{q_0^*}(u) \leq 0\). As a consequence, we obtain \(J_{q_0^*}(u) = 0\) from Corollary 2.11. Finally, we set \(u_{q_0^*} = u\) and the conclusion follows. \(\square\)

Remark 3. \(q_0(u_{q_0^*}) = q_0^*\) follows from the definition of \(q_0^*\) and Corollary 4.1. Moreover, \(q_0^* < q(u_{q_0^*})\).

(ii) The mountain pass solution

Define
\[
c_{q_0^*} = \inf_{y \in \Gamma_{q_0^*}} \max_{t \in [0,1]} J_{q_0^*}(y(t)) > 0,
\]
where
\[\Gamma_{0i} = \{ y \in C([0, 1], W^{1,p}_0(\Omega)) : y(0) = 0, \partial\mathcal{I}_0(y(1)) = 0 \}. \]

The following proposition is deduced from Proposition 2.3 and Lemma 2.9.

Proposition 4.2. For \(q = q_0^* \), there exists \(w_{q_0}^* \in W^{1,p}_0(\Omega) \) such that \(\mathcal{I}_{q_0}^*(w_{q_0}^*) = c_{q_0}^* \) and \(\mathcal{I}_{q_0}''(w_{q_0}^*) = 0 \). Particularly, \(\mathcal{I}_{q_0}^*(w_{q_0}^*) > \mathcal{I}_{q_0}^*(u_{q_0}^*) = 0 \).

5 Existence of solutions for \(q \in (q_0^*, q_0^* + \varepsilon) \)

In this section, we will prove Theorem 1.1 (2) (iii).

Consider the following family of constrained minimization problems: For \(q > 0 \),
\[\mathcal{F}_q = \inf_{u \in N_q^*} \mathcal{I}_q(u). \]

Observe that
\[\mathcal{F}_q = \inf_{u \in W^{1,p}_0(\Omega)} \mathcal{I}_q(u) \quad \text{for all} \quad q \in (0, q_0^*], \]
and from Corollary 2.11, we have \(\mathcal{F}_q \geq 0 \) for \(q \geq q_0^* \).

(i) The local minimum solution

Proposition 5.1. Given \(\delta > 0 \), there exists \(\varepsilon > 0 \) such that \(\mathcal{F}_q < \delta \) for each \(q \in (q_0^*, q_0^* + \varepsilon) \).

Proof. We obtain \(u_{q_0}^* \in N_{q_0}^* \) as in Corollary 4.1. According to Remark 3, there exists \(\varepsilon_1 > 0 \) such that \(q_0^* + \varepsilon_1 < q(u_{q_0}^*) \). If \(q \downarrow q_0^* \), then \(\mathcal{I}_q(u_{q_0}^*) \rightarrow \mathcal{I}_{q_0}^*(u_{q_0}^*) = 0 \). Conversely, for \(q \in (q_0^*, q_0^* + \varepsilon) \), there exists \(t_0^*(u_{q_0}^*) \) such that \(t_0^*(u_{q_0}^*)u_{q_0}^* \in N_{q_0}^* \) by Proposition 2.4 and Proposition 2.10 (ii). When \(t_0^*(u_{q_0}^*) \rightarrow 1 \) as \(q \downarrow q_0^* \), we have
\[0 \leq \mathcal{I}_q(t_0^*(u_{q_0}^*)u_{q_0}^*) \leq \mathcal{I}_q(u_{q_0}^*) \rightarrow \mathcal{I}_{q_0}^*(u_{q_0}^*) = 0, \quad q \downarrow q_0^*. \]

The conclusion follows if we choose \(\varepsilon_2 \) in such a way that \(\mathcal{I}_q(t_0^*(u_{q_0}^*)u_{q_0}^*) < \delta \) for each \(q \in (q_0^*, q_0^* + \varepsilon) \). Then, we take \(\varepsilon = \min(\varepsilon_1, \varepsilon_2) \) and complete the proof.

Recall that by Proposition 2.3, there are positive constants \(\rho, M \) satisfying \(\mathcal{I}_q(u) \geq M \) for each \(||u|| = \rho \). Without loss of generality, we may assume that \(\rho < \bar{C} \), where \(\bar{C} \) is in such a way that
\[||u|| \geq \bar{C} \quad \text{for all} \quad q > 0 \quad \text{and} \quad u \in N_q \]
(see (2.5)).

We choose \(\delta > 0 \) in Proposition 5.1 in such a way that
\[0 < \delta < \min\{M, m\}, \quad (5.1) \]
where \(m \) is the positive constant such that, by Proposition 2.7,
\[\mathcal{I}_q(u) \geq m \quad \text{for all} \quad q > 0 \quad \text{and} \quad u \in N_{q_0}^0. \]

Let \(\varepsilon > 0 \) be as in Proposition 5.1 in correspondence of the above fixed \(\delta > 0 \).

Proposition 5.2. For all \(q \in (q_0^*, q_0^* + \varepsilon) \),
\[\inf\{\mathcal{I}_q(u) : ||u|| \geq \rho\} = \mathcal{F}_q. \]
Proof. In fact, we claim that the inequality \(\inf_j \mathcal{J}_q(u) : ||u|| \geq \rho \) \(\leq \mathcal{J}_q \) holds for \(\rho < \bar{C} \). According to Proposition 2.4, we distinguish the following three cases. When the fiber map \(\psi \) satisfies Proposition 2.4 (i), we have \(\inf_{t \in \mathbb{R}} \psi(t) \geq \mathcal{J}_q \). When the fiber map \(\psi \) satisfies Proposition 2.4 (ii) or (iii), we have \(\inf_{t \in \mathbb{R}} \psi(t) = M \). As the condition \(M > \delta > \mathcal{J}_q \) is satisfied, we finish this proof. \(\square \)

Corollary 5.3. For \(q \in (q_0^*, q_0^* + \varepsilon) \), there exists \(u_q \in \mathcal{N}_q^* \) such that \(\mathcal{J}_q(u_q) = \mathcal{J}_q^* \). Particularly, \(\mathcal{J}_q(u_q) > 0 \) and \(||u_q|| > \bar{C} > \rho \).

Proof. For fixed \(q \in (q_0^*, q_0^* + \varepsilon) \), we take a minimizing sequence \(\{u_n\} \in \mathcal{N}_q^* \cup \mathcal{N}_q^0 \) for \(\mathcal{J}_q < \delta \) by Proposition 5.1. From Proposition 2.7 that \(\mathcal{J}_q(u) \geq m \) on \(\mathcal{N}_q^0 \) and \(m > \delta \) in (5.1), we assume that \(\{u_n\} \subset \mathcal{N}_q^* \). Therefore, by Ekeland’s variational principle, we also have \(\mathcal{J}_q(u_n) \to 0 \). Hence, we deduce from Lemma 2.9 that \(u_n \to u \) in \(W_0^{1,p}(\Omega) \) with \(||u|| \geq \bar{C} > \rho \). Setting \(u_q = u \) clearly we obtain that \(u_q \in \mathcal{N}_q^* \) and \(\mathcal{J}_q(u_q) = \mathcal{J}_q^* \). On account of the fact that \(q > q_0^* \) and the definition of \(q_0^* \), we deduce that \(\mathcal{J}_q(u_q) > 0 \). \(\square \)

(ii) The mountain pass solution

Now, for \(q \in (q_0^*, q_0^* + \varepsilon) \), we select \(\varepsilon > 0 \) such that (5.1) holds for fixed \(\delta > 0 \). Owing to \(\mathcal{J}_q(u) = \mathcal{J}_q \) for \(u_q \in \mathcal{N}_q^* \) (by Corollary 5.3), we define

\[
d_q = \inf_{y \in \Gamma_q} \max_{t \in [0,1]} \mathcal{J}_q(y(t)),
\]

where

\[
\Gamma_q = \{ y \in C([0,1], W_0^{1,p}(\Omega)) : y(0) = 0, y(1) = u_q \}.
\]

Proposition 5.4. For \(q \in (q_0^*, q_0^* + \varepsilon) \), there exists \(w_q \in W_0^{1,p}(\Omega) \setminus \{0\} \) such that \(\mathcal{J}_q(w_q) = d_q \) and \(\mathcal{J}_q'(w_q) = 0 \). Particularly, \(\mathcal{J}_q(w_q) > \mathcal{J}_q(u_q) \).

Proof. From Proposition 2.3 and (5.1), for all \(q > 0 \), there exists \(\rho > 0 \) and \(M > 0 \) satisfying \(\mathcal{J}_q(u) \geq M > \delta \) for every \(u \in S_q = \{ u \in W_0^{1,p}(\Omega) : ||u|| = \rho \} \). Conversely, we know that \(0 = \mathcal{J}_q(0) < \delta \) and \(\mathcal{J}_q(u_q) = \mathcal{J}_q \leq \delta \). Then, we obtain a mountain pass geometry for the functional \(\mathcal{J}_q \), which can be found in \[20\]. The proof follows from Lemma 2.9. \(\square \)

Now, we conclude the proof of Theorem 1.1 (2). The existence of the minimum critical point \(u_q \) is based on Proposition 3.2, Corollary 4.1, and Corollary 5.3. The existence of a mountain pass critical point \(w_q \) which satisfies \(\mathcal{J}_q(w_q) > \max\{0, \mathcal{J}_q(u_q)\} \) is based on Propositions 3.3, 4.2, and 5.4. Actually, \(u_q \) and \(w_q \) are critical points of \(\mathcal{J}_q \) followed by Proposition 2.5, which correspond to the solutions of system (1.1).

Acknowledgments: The authors are grateful to the anonymous referee whose careful reading of this manuscript and valuable comments enhanced the presentation of this manuscript.

Funding information: This research was supported by the Natural Science Foundation of Jilin Province (Grant No. 20210101156JC).

Author contributions: Manuscript preparation: JX; supervision: LW. All authors read and approved the final manuscript.

Conflict of interest: The authors state no conflicts of interest.
References

