Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 10, 2016

Generalized Morphology using Sponges

  • Jasper J. van de Gronde and Jos B. T. M. Roerdink

Abstract

Mathematical morphology has traditionally been grounded in lattice theory. For non-scalar data lattices often prove too restrictive, however. In this paper we present a more general alternative, sponges, that still allows useful definitions of various properties and concepts from morphological theory. It turns out that some of the existing work on “pseudo-morphology” for non-scalar data can in fact be considered “proper” mathematical morphology in this new framework, while other work cannot, and that this correlates with how useful/intuitive some of the resulting operators are.

References

[1] Angulo J. Morphological color processing based on distances. Application to color denoising and enhancement by centre and contrast operators. In The IASTED International Conference on Visualization, Imaging, and Image Processing. 2005 pages 314–319 Search in Google Scholar

[2] Angulo J. Supremum/Infimum and Nonlinear Averaging of Positive Definite Symmetric Matrices. In F. Nielsen, R. Bhatia, editors, Matrix Information Geometry, pages 3–33. Springer Berlin Heidelberg, 2013. 10.1007/978-3-642-30232-9_1 10.1007/978-3-642-30232-9_1Search in Google Scholar

[3] Angulo J., Lefèvre S., Lezoray O. Color Representation and Processing in Polar Color Spaces. In C. Fernandez-Maloigne, F. Robert-Inacio, L. Macaire, editors, Digital Color Imaging, chapter 1, pages 1–40. John Wiley & Sons, Inc, Hoboken, NJ, USA, 2012. 10.1002/9781118561966.ch1 10.1002/9781118561966.ch1Search in Google Scholar

[4] Angulo J., Velasco-Forero S. Complete Lattice Structure of Poincaré Upper-Half Plane and Mathematical Morphology for Hyperbolic-Valued Images. In F. Nielsen, F. Barbaresco, editors, Geometric Science of Information, volume 8085 of LNCS. Springer Berlin Heidelberg, 2013 pages 535–542. 10.1007/978-3-642-40020-9_59 10.1007/978-3-642-40020-9_59Search in Google Scholar

[5] Angulo J., Velasco-Forero S. Morphological Processing of Univariate Gaussian Distribution-Valued Images Based on Poincaré Upper-Half Plane Representation. In F. Nielsen, editor, Geometric Theory of Information, Signals and Communication Technology, pages 331–366. Springer International Publishing, 2014. 10.1007/978-3-319-05317-2_12 10.1007/978-3-319-05317-2_12Search in Google Scholar

[6] Aptoula E., Lefèvre S. On the morphological processing of hue. Image Vis. Comput., 2009. 27(9), 1394–1401. 10.1016/j.imavis.2008.12.007 10.1016/j.imavis.2008.12.007Search in Google Scholar

[7] Astola J., Haavisto P., Neuvo Y. Vector median filters. Proc. IEEE, 1990. 78(4), 678–689. 10.1109/5.54807 10.1109/5.54807Search in Google Scholar

[8] Birkhoff G. Lattice theory, volume 25 of American Mathematical Society Colloquium Publications. American Mathematical Society, 1961 Search in Google Scholar

[9] Burgeth B., Bruhn A., Didas S., Weickert J., Welk M. Morphology for matrix data: Ordering versus PDE-based approach. Image Vis. Comput., 2007. 25(4), 496–511. 10.1016/j.imavis.2006.06.002 10.1016/j.imavis.2006.06.002Search in Google Scholar

[10] Burgeth B., Kleefeld A. Morphology for Color Images via Loewner Order forMatrix Fields. In C.L. Luengo Hendriks, G. Borgefors, R. Strand, editors, Mathematical Morphology and Its Applications to Signal and Image Processing, volume 7883 of LNCS, pages 243–254. Springer Berlin Heidelberg, 2013. 10.1007/978-3-642-38294-9_21 10.1007/978-3-642-38294-9_21Search in Google Scholar

[11] Burgeth B., Kleefeld A. An approach to color-morphology based on Einstein addition and Loewner order. Pattern Recognit. Lett., 2014. 47, 29–39. 10.1016/j.patrec.2014.01.018 10.1016/j.patrec.2014.01.018Search in Google Scholar

[12] Burgeth B., Papenberg N., Bruhn A., Welk M., Feddern C., Weickert J. Morphology for Higher-Dimensional Tensor Data via Loewner Ordering. In C. Ronse, L. Najman, E. Decencière, editors, Mathematical Morphology: 40 Years On, volume 30 of Computational Imaging and Vision, pages 407–416. Springer Netherlands, 2005. 10.1007/1-4020-3443-1_37 10.1007/1-4020-3443-1_37Search in Google Scholar

[13] Burgeth B., Welk M., Feddern C., Weickert J. Morphological Operations on Matrix-Valued Images. In T. Pajdla, J. Matas, editors, Computer Vision – ECCV 2004, volume 3024 of LNCS, pages 155–167. Springer Berlin Heidelberg, 2004. 10.1007/978- 3-540-24673-2_13 10.1007/978-3-540-24673-2_13Search in Google Scholar

[14] Burgeth B., Welk M., Feddern C., Weickert J. Mathematical Morphology on Tensor Data Using the Loewner Ordering. In J. Weickert, H. Hagen, editors, Visualization and Processing of Tensor Fields, Math. Vis., pages 357–368. Springer Berlin Heidelberg, 2006. 10.1007/3-540-31272-2_22 10.1007/3-540-31272-2_22Search in Google Scholar

[15] Chevallier E., Angulo J. The discontinuity issue of total orders on metric spaces and its consequences for mathematical morphology. Technical report, Centre de Morphologie Mathématique, MINES ParisTech, 2014 Search in Google Scholar

[16] Chevallier E., Chevallier A., Angulo J. N-ary Mathematical Morphology. In J.A. Benediktsson, J. Chanussot, L. Najman, H. Talbot, editors, Mathematical Morphology and Its Applications to Signal and Image Processing, volume 9082 of LNCS, pages 339–350. Springer International Publishing, 2015. 10.1007/978-3-319-18720-4_29 10.1007/978-3-319-18720-4_29Search in Google Scholar

[17] Comer M.L., Delp E.J. Morphological operations for color image processing. J. Electron. Imaging., 1999. 8(3), 279–289. 10.1117/1.482677 10.1117/1.482677Search in Google Scholar

[18] Deborah H., Richard N., Hardeberg J. Spectral Ordering Assessment Using Spectral Median Filters. In J.A. Benediktsson, J. Chanussot, L. Najman, H. Talbot, editors, Mathematical Morphology and Its Applications to Signal and Image Processing, volume 9082 of LNCS, pages 387–397. Springer International Publishing, 2015. 10.1007/978-3-319-18720-4_33 10.1007/978-3-319-18720-4_33Search in Google Scholar

[19] Donnelly W., Lauritzen A. Variance Shadow Maps. In Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, I3D ’06. ACM, New York, NY, USA, 2006 pages 161–165. 10.1145/1111411.1111440 10.1145/1111411.1111440Search in Google Scholar

[20] Facchi P., Kulkarni R.,Man’ko V.I.,Marmo G., Sudarshan E.C.G., Ventriglia F. Classical and quantumFisher information in the geometrical formulation of quantum mechanics. Physics Letters A, 2010. 374(48), 4801–4803. 10.1016/j.physleta.2010.10.005 10.1016/j.physleta.2010.10.005Search in Google Scholar

[21] Farup I. Hyperbolic geometry for colour metrics. Optics Express, 2014. 22(10), 12369+. 10.1364/oe.22.012369 10.1364/OE.22.012369Search in Google Scholar PubMed

[22] Franchi G., Angulo J. Ordering on the Probability Simplex of Endmembers for Hyperspectral Morphological Image Processing. In J.A. Benediktsson, J. Chanussot, L. Najman, H. Talbot, editors, Mathematical Morphology and Its Applications to Signal and Image Processing, volume 9082 of LNCS, pages 410–421. Springer International Publishing, 2015. 10.1007/978-3-319- 18720-4_35 10.1007/978-3-319-18720-4_35Search in Google Scholar

[23] Fried E. Weakly associative lattices with join and meet of several elements. Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 1973. 16, 93–98 Search in Google Scholar

[24] Fried E., Grätzer G. A nonassociative extension of the class of distributive lattices. Pacific J. Math., 1973. 49(1), 59–78 10.2140/pjm.1973.49.59Search in Google Scholar

[25] Fried E., Grätzer G. Some examples of weakly associative lattices. Colloq. Math., 1973. 27, 215–221 10.4064/cm-27-2-215-221Search in Google Scholar

[26] Fried E., Grätzer G. Partial and free weakly associative lattices. Houston J. Math., 1976. 2(4), 501–512 Search in Google Scholar

[27] Gomila C., Meyer F. Levelings in vector spaces. In Int. Conf. Image Proc., volume 2. IEEE, 1999 pages 929–933. 10.1109/icip.1999.823034 Search in Google Scholar

[28] Goutsias J., Heijmans H.J.A.M., Sivakumar K. Morphological Operators for Image Sequences. Comput. Vis. Image Underst., 1995. 62(3), 326–346. 10.1006/cviu.1995.1058 10.1006/cviu.1995.1058Search in Google Scholar

[29] Grätzer G. General Lattice Theory. Birkhäuser Verlag, second edition, 2003 Search in Google Scholar

[30] Gromov M. In a Search for a Structure, Part 1: On Entropy, 2013. Retrieved on 2015-06-18 Search in Google Scholar

[31] van de Gronde J.J., Roerdink J.B.T.M. Frames, the Loewner order and eigendecomposition for morphological operators on tensor fields. Pattern Recognit. Lett., 2014. 47, 40–49. 10.1016/j.patrec.2014.03.013 10.1016/j.patrec.2014.03.013Search in Google Scholar

[32] van de Gronde J.J., Roerdink J.B.T.M. Group-Invariant Colour Morphology Based on Frames. IEEE Trans. Image Process., 2014. 23(3), 1276–1288. 10.1109/tip.2014.2300816 10.1109/TIP.2014.2300816Search in Google Scholar PubMed

[33] van de Gronde J.J., Roerdink J.B.T.M. Sponges for Generalized Morphology. In J.A. Benediktsson, J. Chanussot, L. Najman, H. Talbot, editors, Mathematical Morphology and Its Applications to Signal and Image Processing, volume 9082 of LNCS, pages 351–362. Springer International Publishing, 2015. 10.1007/978-3-319-18720-4_30 10.1007/978-3-319-18720-4_30Search in Google Scholar

[34] Hanbury A.G., Serra J. Morphological operators on the unit circle. IEEE Trans. Image Process., 2001. 10(12), 1842–1850. 10.1109/83.974569 10.1109/83.974569Search in Google Scholar PubMed

[35] Harary F., Moser L. The Theory of Round Robin Tournaments. The American Mathematical Monthly, 1966. 73(3). 10.2307/2315334 10.2307/2315334Search in Google Scholar

[36] Heijmans H.J.A.M. Morphological image operators. Academic Press, 1994 Search in Google Scholar

[37] Heijmans H.J.A.M., Keshet R. Inf-Semilattice Approach to Self-Dual Morphology. J. Math. Imaging Vis., 2002. 17(1), 55–80. 10.1023/a:1020726725590 10.1023/A:1020726725590Search in Google Scholar

[38] Leutola K., Nieminen J. Posets and generalized lattices. Algebra Universalis, 1983. 16(1), 344–354. 10.1007/bf01191789 10.1007/BF01191789Search in Google Scholar

[39] Meyer F. Alpha-Beta Flat Zones, Levelings and Flattenings. In H. Talbot, R. Beare, editors, Mathematical morphology, pages 47–68. CSIRO Publishing, 2002 Search in Google Scholar

[40] Pasternak O., Sochen N., Basser P.J. The effect of metric selection on the analysis of diffusion tensor MRI data. NeuroImage, 2010. 49(3), 2190–2204. 10.1016/j.neuroimage.2009.10.071 10.1016/j.neuroimage.2009.10.071Search in Google Scholar PubMed PubMed Central

[41] Peters R.A. Mathematical morphology for angle-valued images. Proceedings of the SPIE, 1997. 3026, 84–94. 10.1117/12.271144 10.1117/12.271144Search in Google Scholar

[42] Rachunek J. Semi-ordered groups. Sborník prací Prírodovedecké fakulty University Palackého v Olomouci. Matematika, 1979. 18(1), 5–20 Search in Google Scholar

[43] Serra J. Anamorphoses and function lattices. In E.R. Dougherty, P.D. Gader, J.C. Serra, editors, Image Algebra and Morphological Image Processing IV, volume 2030 of SPIE Proceedings. 1993 pages 2–11. 10.1117/12.146650 10.1117/12.146650Search in Google Scholar

[44] Skala H.L. Trellis theory. Algebra Universalis, 1971. 1(1), 218–233. 10.1007/bf02944982 10.1007/BF02944982Search in Google Scholar

[45] Tobar M.C., Platero C., González P.M., Asensio G. Mathematical morphology in the HSI colour space. In J. Martí, J. Benedí, A. Mendonça, J. Serrat, editors, Pattern Recognition and Image Analysis, volume 4478 of LNCS, chapter 59, pages 467–474. Springer Berlin Heidelberg, 2007. 10.1007/978-3-540-72849-8_59 10.1007/978-3-540-72849-8_59Search in Google Scholar

[46] Vardavoulia M.I., Andreadis I., Tsalides P. Vector Ordering and Morphological Operations for Colour Image Processing: Fundamentals and Applications. Pattern Analysis & Applications, 2002. 5(3), 271–287. 10.1007/s100440200024 10.1007/s100440200024Search in Google Scholar

[47] Wilkinson M.H.F. Hyperconnections and Openings on Complete Lattices. In P. Soille, M. Pesaresi, G.K. Ouzounis, editors, Mathematical Morphology and Its Applications to Image and Signal Processing, volume 6671 of LNCS, pages 73–84. Springer Berlin Heidelberg, 2011. 10.1007/978-3-642-21569-8_7 10.1007/978-3-642-21569-8_7Search in Google Scholar

[48] Zanoguera F., Meyer F. On the implementation of non-separable vector levelings. In H. Talbot, R. Beare, editors, Mathematical morphology, pages 369+. CSIRO Publishing, 2002 Search in Google Scholar

Received: 2015-6-29
Accepted: 2016-2-8
Published Online: 2016-3-10

© 2016 Jasper J. van de Gronde and Jos B. T. M. Roerdink

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 22.9.2023 from https://www.degruyter.com/document/doi/10.1515/mathm-2016-0002/html
Scroll to top button