Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 18, 2016

Improved Part-Based Segmentation of Voxel Shapes by Skeleton Cut Spaces

  • Cong Feng , Andrei C. Jalba and Alexandru C. Telea


We present a refined method for part-based segmentation of voxel shapes by constructing partitioning cuts from every voxel of the shape’s medial surface. Our cuts have several desirable properties – smoothness, tightness, and orientation with respect to the shape’s local symmetry axis, making it a good segmentation tool.We analyze the space of all cuts created for a given shape and detect cuts which are good segment borders. We present a detailed analysis of the parameter space of our method, which yields good preset values for all its parameters. Our method is robust to noise, pose invariant, independent on the shape geometry and genus, and is simple to implement.We demonstrate our method for both automatic and interactive segmentation on a wide selection of 3D shapes.


[1] Agates, A., Pratikakis, I., Perantonis, S., Sapidis, N., and Azariadis, P. (2007) 3D mesh segmentation methodologies for CAD applications. Computer-Aided Design & Applications, 4, 827–841. 10.1080/16864360.2007.10738515Search in Google Scholar

[2] Aim@Shape Consortium (2015), Aim@Shape repository. Search in Google Scholar

[3] Arcelli, C., di Baja, G. S., and Serino, L. (2011) Distance-driven skeletonization in voxel images. IEEE TPAMI, 33, 709–720. 10.1109/TPAMI.2010.140Search in Google Scholar PubMed

[4] Attene, M., Falcidieno, B., and Spagnuolo, M. (2006) Hierarchical mesh segmentation based on fitting primitives. Visual Comput, 22, 181–193. 10.1007/s00371-006-0375-xSearch in Google Scholar

[5] Attene, M., Katz, S., Mortara, M., Patane, G., Spagnuolo, M., and Tal, A. (2006) Mesh segmentation - a comparative study. Proc. SMI, pp. 134–141. 10.1109/SMI.2006.24Search in Google Scholar

[6] Au, O., Tai, C., Chu, H., Cohen-Or, D., and Lee, T. (2008) Skeleton extraction by mesh contraction. ACM TOG (Proc. ACM SIGGRAPH), 27, 441–449. Search in Google Scholar

[7] Braunstein, M., Hoffman, D., and Saidpour, A. (1989) Parts of visual objects: and experimental test of the minima rule. Perception, 18, 817–826. 10.1068/p180817Search in Google Scholar PubMed

[8] Chang, M., Leymarie, F., and Kimia, B. (2009) Surface reconstruction from point clouds by transforming the medial scaffold. CVIU, 113, 1130–1146. 10.1016/j.cviu.2009.04.001Search in Google Scholar

[9] Clarenz, U., Griebel, M., Rumpf, M., Schweitzer, M. A., and Telea, A. (2004) Feature sensitive multiscale editing on surfaces. Visual Computer, 20, 329–343. 10.1007/s00371-004-0245-3Search in Google Scholar

[10] Comaniciu, D. and Meer, P. (2002) Mean shift: A robust approach toward feature space analysis. IEEE TPAMI, 24, 603–619. 10.1109/34.1000236Search in Google Scholar

[11] de Hoon, M. J. J., Imoto, S., Nolan, J., and Miyano, S. (2004) Open source clustering software. Bioinformatics, 19, 1453–1454, software available at 10.1093/bioinformatics/bth078Search in Google Scholar PubMed

[12] Dey, T. and Sun, J. (2006) Defining and computing curve-skeletons with the medial geodesic function. Proc. SGP, pp. 143– 152. Search in Google Scholar

[13] Feng, C., Jalba, A., and Telea, A. (2015) Part-based segmentation by skeleton cut space analysis. Proc. ISMM, pp. 607–618. 10.1007/978-3-319-18720-4_51Search in Google Scholar

[14] Giblin, P. and Kimia, B. (2004) A formal classification of 3D medial axis points and their local geometry. IEEE TPAMI, 26, 238–251. 10.1109/TPAMI.2004.1262192Search in Google Scholar

[15] Golovinskiy, A. and Funkhouser, T. (2008) Randomized cuts for 3D mesh analysis. ACM TOG, 27, 454–463. 10.1145/1409060.1409098Search in Google Scholar

[16] Hoffman, D. and Richards, W. (1984) Parts of recognition. Cognition, 18, 65–96. 10.1016/0010-0277(84)90022-2Search in Google Scholar

[17] Jalba, A., Kustra, J., and Telea, A. (2013) Surface and curve skeletonization of large 3D models on the GPU. IEEE TPAMI, 35, 1495–1508. 10.1109/TPAMI.2012.212Search in Google Scholar

[18] Jalba, A., Sobiecki, A., and Telea, A. (2015) An unified multiscale framework for planar, surface, and curve skeletonization. IEEE TPAMI, dOI:10.1109/TPAMI.2015.2414420. 10.1109/TPAMI.2015.2414420Search in Google Scholar

[19] Katz, S., Leifman, G., and Tal, A. (2005) Mesh segmentation using feature point and core extraction. Visual Comput, 21, 649–658. 10.1007/s00371-005-0344-9Search in Google Scholar

[20] Katz, S. and Tal, A. (2003) Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM TOG, 22, 954–961. 10.1145/882262.882369Search in Google Scholar

[21] Kiryati, N. and Szekely, G. (1993) Estimating shortest paths and minimal distances on digitized three-dimensional surfaces. Pattern Recognition, 26, 1623–1637. 10.1016/0031-3203(93)90018-RSearch in Google Scholar

[22] Kustra, J., Jalba, A., and Telea, A. (2015) Computing refined skeletal features from medial point clouds. Patt Recog Lett, dOI:10.1016/j.patrec.2015.05.007. 10.1016/j.patrec.2015.05.007Search in Google Scholar

[23] Lee, Y., Lee, S., Shamir, A., and Cohen-Or, D. (2004) Intelligent mesh scissoring using 3D snakes. Proc. IEEE Pacific Graphics, pp. 279–287. Search in Google Scholar

[24] Lee, Y., Lee, S., Shamir, A., Cohen-Or, D., and Seidel, H. P. (2005) Mesh scissoring with minima rule and part salience. CAGD, 22, 444–465. 10.1016/j.cagd.2005.04.002Search in Google Scholar

[25] Li, X., Woon, T., Tan, T., and Huang, Z. (2001) Decomposing polygon meshes for interactive applications. Proc. I3D, pp. 35–42. 10.1145/364338.364343Search in Google Scholar

[26] Lien, J., Keyser, J., and Amato, N. (2006) Simultaneous shape decomposition and skeletonization. Proc. ACM SPM, pp. 219– 228. 10.1145/1128888.1128919Search in Google Scholar

[27] Liu, R. and Zhang, H. (2004) Segmentation of 3D meshes through spectral clustering. Proc. Pacific Graphics, pp. 298–305. Search in Google Scholar

[28] Liu, Y., Pu, J., Zha, H., Liu, W., and Uehara, Y. (2004) Thickness histogram and statistical harmonic representation for 3D model retrieval. Proc. 3D Data Processing, Visualization and Transmission (3DPVT), pp. 896–903. 10.1109/TDPVT.2004.1335410Search in Google Scholar

[29] Liu, Z., Tang, S., Bu, S., and Zhang, H. (2013) New evaluation metrics for mesh segmentation. Computers & Graphics, 37, 553–564. 10.1016/j.cag.2013.05.021Search in Google Scholar

[30] Mangan, A. and Whitaker, R. (1999) Partitioning 3D surface meshes using watershed segmentation. IEEE TVCG, 5, 308–321. 10.1109/2945.817348Search in Google Scholar

[31] McGill University (2015), McGill 3D Shape Benchmark. Search in Google Scholar

[32] MeshLab Consortium (2015), MeshLab geometry processing tool. Search in Google Scholar

[33] Mount, D. and Arya, S. (2015), Approximate nearest-neighbor search. Search in Google Scholar

[34] Nooruddin, F. and Turk, G. (2003) Simplification and repair of polygonal models using volumetric techniques. IEEE TVCG, 9. 10.1109/TVCG.2003.1196006Search in Google Scholar

[35] Page, D., Koschan, A., and Abidi, M. (2003) Perception-based 3D triangle mesh segmentation using fast marching watersheds. Proc. IEEE CVPR, pp. 27–32. Search in Google Scholar

[36] Reniers, D. and Telea, A. (2007) Tolerance-based feature transforms. Advances in Computer Graphics and Computer Vision, pp. 187–200, Springer. 10.1007/978-3-540-75274-5_12Search in Google Scholar

[37] Reniers, D. and Telea, A. (2008) Hierarchical part-type segmentation using voxel-based curve skeletons. Visual Comput, 24, 383–395. 10.1007/s00371-008-0220-5Search in Google Scholar

[38] Reniers, D. and Telea, A. (2008) Part-type segmentation of articulated voxel-shapes using the junction rule. CGF, 27, 1845– 1852. 10.1111/j.1467-8659.2008.01331.xSearch in Google Scholar

[39] Reniers, D. and Telea, A. (2008) Patch-type segmentation of voxel shapes using simplified surface skeletons. CGF, 27, 1837– 1844. 10.1111/j.1467-8659.2008.01330.xSearch in Google Scholar

[40] Reniers, D., vanWijk, J. J., and Telea, A. (2008) Computingmultiscale skeletons of genus 0 objects using a global importance measure. IEEE TVCG, 14, 355–368. Search in Google Scholar

[41] Roerdink, J. and Hesselink, W. (2008) Euclidean skeletons of digital image and volume data in linear time by the integer medial axis transform. IEEE TPAMI, 30, 2204–2217. 10.1109/TPAMI.2008.21Search in Google Scholar PubMed

[42] Schmitt, W., Sotomayor, J., Telea, A., Silva, C., and Comba, J. (2015) A 3D shape descriptor based on depth complexity and thickness histograms. Proc. IEEE SIBGRAPI, pp. 261–267. 10.1109/SIBGRAPI.2015.51Search in Google Scholar

[43] Shamir, A. (2004) A formulation of boundary mesh segmentation. Proc. 3DPVT. Search in Google Scholar

[44] Shamir, A. (2008) A survey on mesh segmentation techniques. CGF, 27, 1539–1556. 10.1111/j.1467-8659.2007.01103.xSearch in Google Scholar

[45] Shapira, L., Shamir, A., and Cohen-Or, D. (2008) Consistent mesh partitioning and skeletonisation using the shape diameter function. Visual Comput, 24, 249–259. 10.1007/s00371-007-0197-5Search in Google Scholar

[46] Siddiqi, K., Bouix, S., Tannenbaum, A., and Zucker, S. (2002) Hamilton-Jacobi skeletons. IJCV, 48, 215–231. 10.1023/A:1016376116653Search in Google Scholar

[47] Siddiqi, K. and Pizer, S. (2008) Medial representations: mathematics, algorithms and applications. Springer. 10.1007/978-1-4020-8658-8Search in Google Scholar

[48] Siddiqi, K., Zhang, J.,Macrini, D., Shoukofandeh, A., and Dickinson, S. (2008) Retrieving articulated 3D models using medial surfaces. Mach. Vis. Appl., 19, 261–275. Search in Google Scholar

[49] Singh, M., Seyranian, G., and Hoffman, D. (1999) Parsing silhouettes: The short-cut rule. Perception & Psychophysics, pp. 636–660. 10.3758/BF03205536Search in Google Scholar

[50] Tierny, J., Vandeborre, J., and Daoudi, M. (2007) Topology driven 3D mesh hierarchical segmentation. Proc. SMI, pp. 215– 220. 10.1109/SMI.2007.38Search in Google Scholar

[51] Yu, L., Efstathiou, K., Isenberg, P., and Isenberg, T. (2012) Efficient structure-aware selection techniques for 3D point cloud visualizations with 2DOF input. IEEE TVCG, 18, 2245–2254. Search in Google Scholar

[52] Zwicker, M., Pauly, M., and Gross, O. K. M. (2002) Pointshop 3D: an interactive system for point-based surface editing. Proc. ACM SIGGRAPH, pp. 322–329. 10.1145/566654.566584Search in Google Scholar

Received: 2015-6-29
Accepted: 2016-1-30
Published Online: 2016-3-18

© 2016 Cong Feng et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 30.11.2023 from
Scroll to top button