Abstract
In astronomy, sky surveys contain a large number of light-emitting sources, often with intensities close to the noise level. Automatic extraction of astronomical objects is therefore needed. SExtractor is a widely used program for automated source extraction and cataloguing, but it is not optimal with faint extended sources. Using SExtractor as a reference, the paper describes an improvement of a previous method proposed by the authors. It is a Max-Tree-based method for extraction of faint extended sources without using a stronger image smoothing. The Max-Tree structure is a hierarchical representation of an image, in which attributes can be computed in every node. Object detection is performed on the nodes of the tree and it relies on the distribution of a statistic calculated using the power attribute, compared to the expected distribution in case of noise. Statistical tests are presented, a comparison with the object extraction of SExtractor is shown and results are discussed.
References
[1] K. N. Abazajian et al., Astrophys. J. Suppl. S., 2009, 182, 2 Search in Google Scholar
[2] C. Berger, T. Géraud, R. Levillain, N. Widynski, A. Baillard, E. Bertin, Proceedings of International Conference on Image Processing, Sep. 16-19, 2007, San Antonio, TX, USA 41 Search in Google Scholar
[3] E. Bertin, S. Arnouts, Astron. Astrophys. Suppl. S., 1996, 117, 393 10.1051/aas:1996164Search in Google Scholar
[4] E. Breen, R. Jones, Comput. Vis. Image. Und., 1996, 64, 3 10.1006/cviu.1996.0066Search in Google Scholar
[5] R. B. D’Agostino, A. Belanger, R. B. D’Agostino Jr, Am. Stat., 1990, 44, 4 Search in Google Scholar
[6] J. Gunn et al., Astron. J., 1998, 116, 6 Search in Google Scholar
[7] M. Masias, J. Freixenet, X. Lladó, M. Peracaula, Mon. Not. R. Astron. Soc., 2012 422, 1674 10.1111/j.1365-2966.2012.20742.xSearch in Google Scholar
[8] M. Masias, M. Peracaula, J. Freixenet, X. Lladó: Exp. Astron., 2013, 36, 591 10.1007/s10686-013-9346-1Search in Google Scholar
[9] U. Moschini et al., Proceedings of the 2014 conference on Big Data from Space (BiDS’14), Nov. 12-14, 2014, Frascati, Italy (Publications Office of the European Union) 232 Search in Google Scholar
[10] G. K. Ouzounis, M. H. F. Wilkinson, IEEE T. Pattern Anal., 2011, 33, 224 10.1109/TPAMI.2010.74Search in Google Scholar PubMed
[11] B. Perret, S. Lefevre, C. Collet, E. Slezak, Proceedings of International Conference on Pattern Recognition, Aug. 23-26, 2010, Istanbul, Turkey (IEEE) 4089 Search in Google Scholar
[12] P. Salembier, A. Oliveras, L. Garrido, IEEE T. Image Process., 1998, 7, 555 10.1109/83.663500Search in Google Scholar PubMed
[13] sdss.org, 2007: Photometric flux calibration - published online: http://www.sdss2.org/dr7/algorithms/fluxcal.html Search in Google Scholar
[14] J. Serra, Image Analysis and Mathematical Morphology, Part II: Theoretical Advances, 1988, Academic Press, London Search in Google Scholar
[15] P. Serra et al., Mon. Not. R. Astron. Soc., 2015, 448, 2 Search in Google Scholar
[16] C. Stoughton et al., Astron. J., 2002, 123, 1 (2002) Search in Google Scholar
[17] P. Teeninga, U. Moschini, S. C. Trager, and M. H. F. Wilkinson, 11th International Conference Pattern Recognition and Image Analysis: New Information Technologies, Sep. 23-28, 2013, Samara, Russia (IPSI RAS) 746 Search in Google Scholar
[18] P. Teeninga, U. Moschini, S. C. Trager, M. H. F. Wilkinson, Proceedings of International Conference on Image Processing, Sep. 27-30, 2015, Quebec City, Canada, (IEEE) Search in Google Scholar
[19] N. Young, A. N. Evans, IEE P-Vis. Image Sign., 2003, 150, 5 10.1049/ip-vis:20030768Search in Google Scholar
© 2016 Paul Teeninga et al.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.