Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access April 14, 2016

Cluster Based Vector Attribute Filtering

  • Fred N. Kiwanuka and Michael H.F. Wilkinson

Abstract

Morphological attribute filters operate on images based on properties or attributes of connected components. Until recently, attribute filtering was based on a single global threshold on a scalar property to remove or retain objects. A single threshold struggles in case no single property or attribute value has a suitable, usually multi-modal, distribution. Vector-attribute filtering allows better description of characteristic features for 2D images. In this paper, we apply vector-attribute filtering to 3D and incorporate unsupervised pattern recognition, where connected components are classified based on the similarity of feature vectors. Using a single attribute allows multi-thresholding for attribute filters where more than two classes of structures of interest can be selected. In vector-attribute filters automatic clustering avoids the need for either setting very many attribute thresholds, or finding suitable class prototypes in 3D and setting a dissimilarity threshold. Explorative visualization reduces to visualizing and selecting relevant clusters. We show that the performance of these new filters is better than those of regular attribute filters in enhancement of objects in medical images.

References

[1] Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Kluwer Academic Publishers, Norwell, MA, USA (1981) 10.1007/978-1-4757-0450-1Search in Google Scholar

[2] Breen, E.J., Jones, R.: Attribute openings, thinnings and granulometries. Comp. Vis. Image Understand. 64(3), 377–389 (1996) 10.1006/cviu.1996.0066Search in Google Scholar

[3] Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal.Mach. Intell. 24(5), 603–619 (May 2002) 10.1109/34.1000236Search in Google Scholar

[4] Dunn, J.C.: A fuzzy relative of the isodata process and its use in detecting compact well-separated clusters. Journal of Cybernetics 3(3), 32–57 (1973) 10.1080/01969727308546046Search in Google Scholar

[5] Freedman, D., Kisilev, P.: Fast mean shift by compact density representation. In: CVPR. pp. 1818–1825. IEEE (2009) 10.1109/CVPR.2009.5206716Search in Google Scholar

[6] Fukunaga, K., Hostetler, L.D.: Estimation of the gradient of a density function with applications in pattern recognition. IEEE Trans. Inform. Theor. IT-21, 32–40 (1975) 10.1109/TIT.1975.1055330Search in Google Scholar

[7] Kiwanuka, F.N.,Wilkinson, M.H.F.: Radial moment invariants for attribute filtering in 3D. In: Käthe, U., Montanvert, A., Soille, P. (eds.) Proc. Workshop on Applications of Discrete Geometry and Mathematical Morphology (WADGMM). pp. 37–41 (2010) Search in Google Scholar

[8] Kiwanuka, F.N., Ouzounis, G.K., Wilkinson, M.H.: Surface-area-based attribute filtering in 3d. In: Proceedings of the 9th ISMM ’09. pp. 70–81. Springer-Verlag, Berlin, Heidelberg (2009) 10.1007/978-3-642-03613-2_7Search in Google Scholar

[9] Kiwanuka, F.N., Wilkinson, M.H.F.: Cluster-based vector-attribute filtering for ct and mri enhancement. In: ICPR. pp. 3112– 3115. IEEE (2012) Search in Google Scholar

[10] Kleinberg, J.: An impossibility theorem for clustering. pp. 446–453. MIT Press (2002) Search in Google Scholar

[11] Lindblad, J.: Surface area estimation of digitized 3d objects using weighted local configurations. Image and Vision Computing 23(2), 111 – 122 (2005) 10.1016/j.imavis.2004.06.012Search in Google Scholar

[12] Linde, Y., Buzo, A., Gray, R.: An algorithm for vector quantizer design. Communications, IEEE Transactions on 28(1), 84–95 (jan 1990) 10.1109/TCOM.1980.1094577Search in Google Scholar

[13] Lorensen,W.E., Cline, H.E.: Marching cubes: A high resolution 3D surface construction algorithm. Computer Graphics 21(4), 163–169 (1987) 10.1145/37402.37422Search in Google Scholar

[14] Macqueen, J.B.: Some methods of classification and analysis ofmultivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. pp. 281–297 (1967) Search in Google Scholar

[15] Maragos, P., Ziff, R.D.: Threshold decomposition in morphological image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 498–504 (1990) Search in Google Scholar

[16] Naegel, B., Passat, N., Boch, N., Kocher, M.: Segmentation using vector-attribute filters: Methodology and application to dermatological imaging. In: Proc. Int. Symp. Math. Morphology (ISMM) 2007. pp. 239–250 (2007) Search in Google Scholar

[17] Najman, L., Couprie, M.: Building the component tree in quasi-linear time. IEEE Trans. Image Proc. 15, 3531–3539 (2006) 10.1109/TIP.2006.877518Search in Google Scholar PubMed

[18] Ouzounis, G.K., Giannakopoulos, S., Simopoulos, C.E., Wilkinson, M.H.F.: Robust extraction of urinary stones from ct data using attribute filters. In: Image Processing (ICIP), 2009 16th IEEE International Conference on. pp. 2629 –2632 (nov 2009) 10.1109/ICIP.2009.5414096Search in Google Scholar

[19] Ouzounis, G.K., Giannakopoulos, S., Simopoulos, C.E., Wilkinson, M.H.F.: Robust extraction of urinary stones from ct data using attribute filters. In: Proc. Int. Conf. Image Proc. 2009 (2009) 10.1109/ICIP.2009.5414096Search in Google Scholar

[20] Ouzounis, G.K., Wilkinson, M.H.F.: Hyperconnected attribute filters based on k-flat zonesg. IEEE Trans. Pattern Anal. Mach. Intell. (2010), in press 10.1109/TPAMI.2010.74Search in Google Scholar PubMed

[21] Perret, B., Collet, C.: Connected image processing with multivariate attributes: An unsupervised markovian classification approach. Computer Vision and Image Understanding 133(0), 1–14 (2015) 10.1016/j.cviu.2014.09.008Search in Google Scholar

[22] Purnama, K.E., Wilkinson, M.H.F., Veldhuizen, A.G., van Ooijen, P.M.A., Lubbers, J., Sardjono, T.A., Verkerke, G.J.: Branches filtering approach formax-tree. In: Proc. 2nd Int. Conf. Comput. Vision Theory Applic (VISAPP) 2007. pp. 328–332. Barcelona (March 8-11 2007) Search in Google Scholar

[23] Ronse, C.: Set-theoretical algebraic approaches to connectivity in continuous or digital spaces. J. Math. Imag. Vis. 8, 41–58 (1998) Search in Google Scholar

[24] Salembier, P., Oliveras, A., Garrido, L.: Anti-extensive connected operators for image and sequence processing. IEEE Transactions on Image Processing 7, 555–570 (1998) 10.1109/83.663500Search in Google Scholar PubMed

[25] Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Proc. 4, 1153–1160 (1995) 10.1109/83.403422Search in Google Scholar PubMed

[26] Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Transactions on Image Processing 4, 1153–1160 (1995) 10.1109/83.403422Search in Google Scholar

[27] Salembier, P., Wilkinson, M.H.F.: Connected operators: A review of region-based morphological image processing techniques. IEEE Signal Processing Magazine 26(6), 136–157 (2009) 10.1109/MSP.2009.934154Search in Google Scholar

[28] Serra, J.: Connectivity on complete lattices. J. Math. Imag. Vis. 9(3), 231–251 (1998) Search in Google Scholar

[29] Silverman, B.W.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, London (1986) Search in Google Scholar

[30] Sladoje, N., Nystrom, I., Saha, P.K.: Measurements of digitized objects with fuzzy borders in 2d and 3d. Image Vis. Comput. 23, 123 – 132 (2005) Search in Google Scholar

[31] Soille, P.: Constrained connectivity and connected filters. IEEE Trans. Pattern Anal.Mach. Intell. 30(7), 1132–1145 (July 2008) 10.1109/TPAMI.2007.70817Search in Google Scholar PubMed

[32] Tushabe, F.: Extending Attribute Filters to Color Processing andMulti-Media Applications. Ph.D. thesis, University of Groningen (2010) Search in Google Scholar

[33] Tushabe, F.,Wilkinson, M.H.F.: Image preprocessing for compression: Attribute filtering. In: World Congress on Engineering and Computer Science 2007 (2007) Search in Google Scholar

[34] Urbach, E.R., Boersma, N.J.,Wilkinson, M.H.F.: Vector-attribute filters. In:Mathematical Morphology: 40 Years On, Proc. Int. Symp. Math. Morphology (ISMM) 2005. pp. 95–104. Paris (18-20 April 2005) 10.1007/1-4020-3443-1_10Search in Google Scholar

[35] Urbach, E.R., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Connected shape-size pattern spectra for rotation and scale-invariant classification of gray-scale images. IEEE Trans. Pattern Anal. Mach. Intell. 29, 272–285 (2007) Search in Google Scholar

[36] Urbach, E.: Contextual image filtering. Image and Vision Computing New Zealand, 2009. IVCNZ ’09. 24th International Conference pp. 299 –303 (nov 2009) 10.1109/IVCNZ.2009.5378393Search in Google Scholar

[37] Wang, P., Lee, D., Gray, A.G., Rehg, J.M.: Fast mean shift with accurate and stable convergence. Journal of Machine Learning Research - Proceedings Track 2, 604–611 (2007) Search in Google Scholar

[38] Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Proc. 16, 2943–2952 (2007) 10.1109/TIP.2007.909317Search in Google Scholar

[39] Wilkinson, M.H.F.: A fast component-tree algorithm for high dynamic-range images and second generation connectivity. In: Proc. Int. Conf. Image Proc. 2011. pp. 1041–1044 (2011) 10.1109/ICIP.2011.6115597Search in Google Scholar

[40] Wilkinson, M.H.F.,Gao, H., Hesselink,W.H., Jonker, J.E., Meijster, A.: Concurrent computation of attribute filters using shared memory parallel machines. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1800–1813 (2008) Search in Google Scholar

[41] Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) Proc. MICCAI’2001. Lecture Notes in Computer Science, vol. 2208, pp. 770–777 (2001) 10.1007/3-540-45468-3_92Search in Google Scholar

[42] Wilkinson, M., Ouzounis, G.K., Soille, P.: Concurrent computation of differential morphological profiles for remote sensing. In: Käthe, U., Montanvert, A., Soille, P. (eds.) Proc. Workshop on Applications of Discrete Geometry and Mathematical Morphology (WADGMM). pp. 67–71 (August 2010) Search in Google Scholar

[43] Xu, Y., Géraud, T., Najman, L.: Morphological filtering in shape spaces: Applications using tree-based image representations. CoRR abs/1204.4758 (2012) Search in Google Scholar

[44] Zunic, J., Hirota, K., Rosin, P.L.: A Hu moment invariant as a shape circularity measure. Pattern Recogn. 43(1), 47–57 (2010) 10.1016/j.patcog.2009.06.017Search in Google Scholar

Received: 2015-6-29
Accepted: 2016-2-8
Published Online: 2016-4-14

© 2016 Fred N. Kiwanuka and Michael H.F. Wilkinson

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 4.10.2023 from https://www.degruyter.com/document/doi/10.1515/mathm-2016-0007/html
Scroll to top button