Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access December 31, 2020

Editorial — Special Issue: ISMM 2019

  • Bernhard Burgeth EMAIL logo , Andreas Kleefeld , Benoît Naegel and Benjamin Perret

Abstract

This editorial presents the Special Issue dedicated to the conference ISMM 2019 and summarizes the articles published in this Special Issue.

References

[1] T. Asplund, C. L. Luengo Hendriks, M. J. Thurley, and R. Strand. Adaptive mathematical morphology on irregularly sampled signals in two dimensions. Mathematical Morphology — Theory and Applications, 4(1):108–126, 2020.10.1515/mathm-2020-0104Search in Google Scholar

[2] T. Asplund, C. L. Luengo Hendriks, M. J. Thurley, and R. Strand. Mathematical morphology on irregularly sampled data in one dimension. Mathematical Morphology — Theory and Applications, 2(1):1–24, 2017.10.1515/mathm-2017-0001Search in Google Scholar

[3] T. Asplund, A. Serna, B. Marcotegui, R. Strand, and C. L. Luengo Hendriks. Mathematical morphology on irregularly sampled data applied to segmentation of 3D point clouds of urban scenes. In B. Burgeth, A. Kleefeld, B. Naegel, N. Passat, and B. Perret, editors, International Symposium on Mathematical Morphology (ISMM), Proceedings, volume 11564 of Lecture Notes in Computer Science, pages 375–387, Heidelberg, Springer, 2019.10.1007/978-3-030-20867-7_29Search in Google Scholar

[4] S. Blusseau, B. Ponchon, S. Velasco-Forero, J. Angulo, and I. Bloch. Approximating morphological operators with part-based representations learned by asymmetric auto-encoders. Mathematical Morphology — Theory and Applications, 4(1):64–86, 2020.10.1515/mathm-2020-0102Search in Google Scholar

[5] B. Burgeth, A. Kleefeld, B. Naegel, N. Passat, and B. Perret, editors. Mathematical Morphology and Its Applications to Signal and Image Processing, volume 11564 of Lecture Notes in Computer Science, Heidelberg, Springer, 2019.10.1007/978-3-030-20867-7Search in Google Scholar

[6] K. Chang and B. Figliuzzi. Fast marching based superpixels. Mathematical Morphology — Theory and Applications, 4(1):127–142, 2020.10.1515/mathm-2020-0105Search in Google Scholar

[7] K. Chang and B. Figliuzzi. Fast marching based superpixels generation. In B. Burgeth, A. Kleefeld, B. Naegel, N. Passat, and B. Perret, editors, International Symposium on Mathematical Morphology (ISMM), Proceedings, volume 11564 of Lecture Notes in Computer Science, pages 350–361, Heidelberg, Springer, 2019.10.1007/978-3-030-20867-7_27Search in Google Scholar

[8] H. ElNaghy and L. Dorst. Boundary morphology for hierarchical simplification of archaeological fragments. Mathematical Morphology — Theory and Applications, 4(1):46–63, 2020.10.1515/mathm-2020-0101Search in Google Scholar

[9] H. ElNaghy and L. Dorst. Complementarity-preserving fracture morphology for archaeological fragments. In B. Burgeth, A. Kleefeld, B. Naegel, N. Passat, and B. Perret, editors, International Symposium on Mathematical Morphology (ISMM), Proceedings, volume 11564 of Lecture Notes in Computer Science, pages 403–414, Heidelberg, Springer, 2019.10.1007/978-3-030-20867-7_31Search in Google Scholar

[10] M. Jouni, M. Dalla Mura, and P. Comon. Hyperspectral image classification based on mathematical morphology and tensor decomposition. Mathematical Morphology — Theory and Applications, 4(1):1–30, 2020.10.1515/mathm-2020-0001Search in Google Scholar

[11] M. Jouni, M. Dalla Mura, and P. Comon. Classification of hyperspectral images as tensors using nonnegative CP decomposition. In B. Burgeth, A. Kleefeld, B. Naegel, N. Passat, and B. Perret, editors, International Symposium on Mathematical Morphology (ISMM), Proceedings, volume 11564 of Lecture Notes in Computer Science, pages 189–201, Heidelberg, Springer, 2019.10.1007/978-3-030-20867-7_15Search in Google Scholar

[12] M. Jouni, M. Dalla Mura, and P. Comon. Hyperspectral image classification using tensor CP decomposition. In IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Proceedings, pages 1164–1167, 2019.10.1109/IGARSS.2019.8898346Search in Google Scholar

[13] B. Ponchon, S. Velasco-Forero, S. Blusseau, J. Angulo, and I. Bloch. Part-based approximations for morphological operators using asymmetric auto-encoders. In B. Burgeth, A. Kleefeld, B. Naegel, N. Passat, and B. Perret, editors, International Symposium on Mathematical Morphology (ISMM), Proceedings, volume 11564 of Lecture Notes in Computer Science, pages 323–334, Heidelberg, Springer, 2019.10.1007/978-3-030-20867-7_25Search in Google Scholar

Received: 2020-12-15
Accepted: 2020-12-15
Published Online: 2020-12-31

© 2020 Bernhard Burgeth et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 3.12.2023 from https://www.degruyter.com/document/doi/10.1515/mathm-2020-0200/html
Scroll to top button