Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter Mouton March 30, 2021

The influence of multimodal textualization in the conversion of semiotic representations in Italian primary school geometry textbooks

Michele Canducci ORCID logo, Andrea Rocci ORCID logo and Silvia Sbaragli ORCID logo
From the journal Multimodal Communication

Abstract

Starting from the corpus of the Swiss National Science Foundation (FNS) project Italmatica. Understanding Mathematics at school, between common language and specialized language (Italmatica. Comprendere la matematica a scuola, fra lingua comune e linguaggio specialistico), an analysis of some examples taken from geometry textbooks used in the Italian primary school is presented. The analysis is based on the application of two intertwined theoretical frameworks: Duval’s semio-cognitive approach, which addresses problems related to mathematics education, and a linguistic approach to multimodal discourse analysis inspired by Bateman. The analysis shows how certain semiotic resources used as rhetorical devices for paraphrastic reformulation (restatement) can support or hinder the semiotic conversion of representations associated with two different semiotic registers (figural and natural language) in print documents with a strong multimodality component.


Corresponding author: Michele Canducci, Department of Education and Learning, University of Applied Sciences and Arts of Southern Switzerland, Locarno, TI, Switzerland; and Faculty of Communication, Culture and Society, Università della Svizzera italiana, Lugano, TI, Switzerland, E-mail:

Funding source: Swiss National Science Foundation

Award Identifier / Grant number: 176339

References

Balacheff, N. (2008). The role of the researcher’s epistemology in mathematics education: an essay on the case of proof. ZDM Int. J. Math. Educ. 40: 501–512.10.1007/s11858-008-0103-2Search in Google Scholar

Bateman, J.A., Delin, J., and Allen, P. (2000). Constraints on Layout in Multimodal Document Generation. Proceedings of first international natural language generation conference, workshop on coherence in generated multimedia, 12 July 2000, Mitzpe Ramon, Israel, pp 7–14.Search in Google Scholar

Bateman, J. (2008). Multimodality and genre. A foundation for the systematic Analysis of multimodal documents. Palgrave Macmillan, New York.10.1057/9780230582323Search in Google Scholar

Bateman, J.A. and Wildfeuer, J. (2014). A multimodal discourse theory of visual narrative. J. Pragmat. 74: 180–208, https://doi.org/10.1016/j.pragma.2014.10.00.Search in Google Scholar

Bearne, E. (2004). Multimodal texts: what they are and how children use them. In: Evans, J. (Ed.). Literacy moves on. David Fulton Publishers, pp. 16–30.Search in Google Scholar

Bezemer, J. and Kress, G. (2010). Changing text: a social semiotic analysis of textbooks. Des. Learn. 3: 10–29, https://doi.org/10.16993/dfl.26.Search in Google Scholar

D’Amore, B. (2001). Concettualizzazione, registri di rappresentazioni semiotiche e noetica. La Mat. e la sua Did 2: 150–173.Search in Google Scholar

D’Amore, B., Fandiño Pinilla, M., and Iori, M. (2013). Primi elementi di semiotica: La sua presenza e la sua importanza nel processo di insegnamento-apprendimento della matematica. Pitagora, Bologna.Search in Google Scholar

D’Amore, B., Fandiño Pinilla, M.I., and Sbaragli, S. (2017). Sulla natura degli oggetti matematici, in relazione con la didattica della matematica. La Mat. e la sua Did 2: 119–162.Search in Google Scholar

Duval, R. (1993). Registres de représentations sémiotique et fonctionnement cognitif de la pensée. Ann. Didactique Sci. Cognit. 5: 37–65. Strasbourg: IREM Strasbourg.Search in Google Scholar

Duval, R. (2006a). Trasformazioni di rappresentazioni semiotiche e prassi di pensiero in matematica. La Mat. e la sua Did 4: 585–619.Search in Google Scholar

Duval, R. (2006b). A cognitive analysis of problems of comprehension in a learning of mathematics. Educ. Stud. Math. 61: 103–131, https://doi.org/10.1007/s10649-006-0400-z.Search in Google Scholar

Duval, R. (2017). Understanding the mathematical way of thinking – the registers of semiotic representations. Springer International Publishing, Cham.10.1007/978-3-319-56910-9Search in Google Scholar

Ernest, P. (1991). The philosophy of Mathematics Education. Falmer Press, Basingstoke.Search in Google Scholar

Ferrari, A. (2019). Che cos’è un testo. Carocci, Roma.Search in Google Scholar

Fischbein, E. (1993). The theory of figural concepts. Educ. Stud. Math. 24: 139–162.10.1007/BF01273689Search in Google Scholar

Godino, J.D. and Batanero, C. (1998). Clarifying the meaning of mathematical objects as a priority area for research in mathematics education. In: Sierpinska, A. and Kilpatrick, J. (Eds.). Mathematics education as a research domain: a search for identity. Springer, Dordrecht, pp. 177–195.10.1007/978-94-011-5194-8_12Search in Google Scholar

Halliday, M.A.K. (1978). Language as social semiotic: the social interpretation of language and meaning. Edward Arnold, London.Search in Google Scholar

Halliday, M.A.K. and Matthiessen, C.M.I.M. (2004). An introduction to functional grammar. Arnold, London.Search in Google Scholar

Iori, M. (2015). La consapevolezza dell’insegnante della dimensione semio-cognitiva dell’apprendimento della matematica, PhD. thesis. Italia, Università degli studi di Palermo.Search in Google Scholar

Jewitt, C., Bezemer, J., and O’Halloran, K.L. (2016). Introducing multimodality. Routledge, New York.10.4324/9781315638027Search in Google Scholar

LaSpina, J.A. (1988). The visual turn and the transformation of the textbook. Lawrence Erlbaum Associates, London.Search in Google Scholar

Mann, W.C. and Thompson, S.A. (1987). Rhetorical structure theory: description and construction of text structures. In: Kempen, G. (Ed.), Natural language generation. NATO ASI series (Series E: Applied Sciences), Vol. 135. Springer, Dordrecht, pp. 85–95.10.1007/978-94-009-3645-4_7Search in Google Scholar

Mann, W.C. and Thompson, S.A. (1988). Rhetorical structure theory: toward a functional theory of text organization. Text 8: 243–281.10.1515/text.1.1988.8.3.243Search in Google Scholar

Nemirovsky, R. and Ferrara, F. (2009). Mathematical imagination and embodied cognition. Educ. Stud. Math. 70: 159–174.10.1007/s10649-008-9150-4Search in Google Scholar

O’Halloran, K.L. (2015). The language of learning mathematics: a multimodal perspective. J. Math. Behav. 40: 63–74, https://doi.org/10.1016/j.jmathb.2014.09.002.Search in Google Scholar

O’Halloran, K.L., and Smith, B.A. (2013). Multimodal text analysis. In: Chapelle, C. (Ed.), Encyclopaedia of applied linguistics. Wiley-Blackwell, Oxford, pp. 63–74.10.1002/9781405198431.wbeal0817Search in Google Scholar

Radford, L., Edwards, L., and Arzarello, F. (2009). Beyond words. Educ. Stud. Math. 70: 91–95.10.1007/s10649-008-9172-ySearch in Google Scholar

Rossari, C. (1994). Les opérations de reformulation. Peter Lang AG, Bern.Search in Google Scholar

Roth, W.M. (2009). Mathematical representation at the interface of body and culture. Information Age Publishing, Charlotte, NC.Search in Google Scholar

Sabena, C., Krause, C., and Maffia, A. (2016). L’analisi semiotica in ottica multimodale: dalla costruzione di un quadro teorico al networking con altre teorie. XXXIII Seminario Nazionale di Ricerca in Didattica della matematica, 28-30 January 2016, Rimini, Italy.Search in Google Scholar

Sbaragli, S. (Ed.) (2006). La Matematica e la sua Didattica, vent’anni di impegno. Atti del Convegno Internazionale omonimo, Castel San Pietro Terme, 23 September 2006, Castel San Pietro Terme, Italy. Carocci, Roma.Search in Google Scholar

Sfard, A. (1991). On the dual nature of mathematical conceptions: reflections on processes and objects as different sides of the same coin. Educ. Stud. Math. 22: 1–36.10.1007/BF00302715Search in Google Scholar

Thibault, P.J. (2001). Multimodality and the school science textbook. In: Torsello-Taylor, C.T., Brunetti, G., and Penello, N. (Eds.). Corpora Testuali per Ricerca, Traduzione e Apprendimento Linguistico. Padua Unipress, pp. 293–335.Search in Google Scholar

Thompson, P.W. and Sfard, A. (1994). Problems of reification: representations and mathematical objects. In: Proceedings of the Annual Meeting of the International Group for the Psychology of Mathematics Education, North America, Plenary Sessions, Vol. 1. Louisiana State University, Baton Rouge, LA, pp. 1–32.Search in Google Scholar

Viale, M. (2016). Il manuale scolastico: un ibrido da perfezionare. Treccani, Lingua Italiana, http://www.treccani.it/magazine/lingua_italiana/speciali/scienze/Viale.html.Search in Google Scholar

Waller, R. (1987). The typographic contribution to language: towards a model of typographic genres and their underlying structures, Ph.D. Thesis. Department of Typography & Graphic, University of Reading, Reading.Search in Google Scholar

Wilson, D. (2011). The conceptual-procedural distinction: past, present and future. In: Escandell-Vidal, V., Leonetti, M., and Ahern, A. (Eds.), Procedural meaning: Problems and perspectives. Emerald Group Publishing, Bingley, pp. 3–31.10.1108/S1472-7870(2011)0000025005Search in Google Scholar

Received: 2020-05-19
Accepted: 2021-01-05
Published Online: 2021-03-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Scroll Up Arrow