Abstract
We suggest a series of extremely fast stochastic algorithms based on exact representations we derive in this paper for the first passage time and exit point probability densities, splitting and survival probabilities. We apply the developed algorithms to the following three classes of problems: (1) simulation of epitaxial nanowire growth, (2) diffusion imaging of microstructures, in particular, cathodoluminescence imaging for threading dislocations, and (3) simulation of the annihilation of electrons and holes in vicinity of nonradiative centers and quantum efficiency evaluation. In the last example the Random Walk on Spheres method is used to solve nonlinear diffusion equations, and to more general systems of nonlinear Smoluchowski equations combined with the kinetic Monte Carlo method.
Funding source: Russian Science Foundation
Award Identifier / Grant number: 14-11-00083
References
1 S. Boggs Jr and D. Krinsley, Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks, Cambridge University Press, Cambridge, 2006. 10.1017/CBO9780511535475Search in Google Scholar
2 O. Brandt and K. H. Ploog, Solid state lighting: The benefits of disorder, Nat. Mater. 5 (2006), 769–770. 10.1038/nmat1728Search in Google Scholar
3 M. A. Caro, S. Schulz and E. P. OReilly, Theory of local electric polarization and its relation to internal strain: Impact on polarization potential and electronic properties of group-III nitrides, Phys. Rev. B 88 (2013), Article ID 214103. 10.1103/PhysRevB.88.214103Search in Google Scholar
4 E. B. Dynkin, Markov Processes (in Russian), Fizmatgiz, Moscow, 1963. Search in Google Scholar
5 S. M. Ermakov, V. V. Nekrutkin and A. S. Sipin, Random Processes for Classical Equations of Mathematical Physics, Math. Appl. Soviet Ser. 34, Kluwer Academic Press, Dordrecht, 1989. 10.1007/978-94-009-2243-3Search in Google Scholar
6 A. Friedmann, Stochastic Differential Equations and Applications. Vols 1 and 2, Probab. Math. Statist. 28, Academic Press, New York, 1976. Search in Google Scholar
7 N. Golyandina, Convergence rate for spherical processes with shifted centres, Monte Carlo Methods Appl. 10 (2004), 3–4, 287–296. 10.1515/mcma.2004.10.3-4.287Search in Google Scholar
8 S. Hammersley, D. Watson-Parris, P. Dawson, M. J. Godfrey, T. J. Badcock, M. J. Kappers, C. McAleese, R. A. Oliver and C. J. Humphreys, The consequences of high injected carrier densities on carrier localization and efficiency droop in InGaN/GaN quantum well structures, J. Appl. Phys. 111 (2012), Article ID 083512. 10.1063/1.3703062Search in Google Scholar
9 G. Kallianpur and P. Sundar, Stochastic Analysis and Diffusion Processes, Oxf. Grad. Texts Math. 24, Oxford University Press, Oxford, 2014. 10.1093/acprof:oso/9780199657063.001.0001Search in Google Scholar
10 V. A. Kanevsky and G. S. Lev, On simulation of the exit point for a Brownian motion in a ball (in Russian), Russ. J. Appl. Math. Phys. 17 (1977), 3, 763–764. 10.1016/0041-5553(77)90153-7Search in Google Scholar
11 P. E. Kloeden and E. Platen, Numerical Solution of Stochastic Differential Equations, Appl. Math. 23, Springer, Berlin, 1992. 10.1007/978-3-662-12616-5Search in Google Scholar
12 A. Kolodko, K. Sabelfeld and W. Wagner, A stochastic method for solving Smoluchowski's coagulation equation, Math. Comput. Simulation 49 (1999), 1–2, 57–79. 10.1016/S0378-4754(99)00008-7Search in Google Scholar
13 D. Nakaji, V. Grillo, N. Yamamoto and T. Mukai, Contrast analysis of dislocation images in TEM-cathodoluminescence technique, J. Electron Microscopy 54 (2005), 3, 223–230. 10.1093/jmicro/54.3.223Search in Google Scholar
14 K. L. Pey, D. S. H. Chan, J. C. H. Phang, J. F. Breese and S. Myhajlenko, Cathodoluminescence contrast of localized defects part I. Numerical model for simulation, Scanning Microscopy 9 (1995), 2, 355–366. Search in Google Scholar
15 S. Redner, A Guide to First-Passage Processes, Cambridge University Press, Cambridge, 2001. 10.1017/CBO9780511606014Search in Google Scholar
16 K. K. Sabelfeld, Monte Carlo Methods in Boundary Value Problems, Springer, Berlin, 1991. 10.1007/978-3-642-75977-2Search in Google Scholar
17 K. K. Sabelfeld, V. M. Kaganer, F. Limbach, P. Dogan, O. Brandt, L. Geelhaar and H. Riechert, Height self-equilibration during the growth of dense nanowire ensembles: Order emerging from disorder, Appl. Phys. Lett. 103 (2013), Article ID 133105. 10.1063/1.4822110Search in Google Scholar
18 K. K. Sabelfeld and A. A. Kolodko, Stochastic Lagrangian models and algorithms for spatially inhomogeneous Smoluchowski equation, Math. Comput. Simulation 61 (2003), 115–137. 10.1016/S0378-4754(02)00141-6Search in Google Scholar
19 K. K. Sabelfeld, A. Levykin and A. Kireeva, Stochastic simulation of fluctuation-induced reaction-diffusion kinetics governed by Smoluchowski equations, Monte Carlo Methods Appl. 21 (2015), 1, 33–48. 10.1515/mcma-2014-0012Search in Google Scholar
20 K. K. Sabelfeld and N. Mozartova, Sparsified randomization algorithms for large systems of linear equations and a new version of the random walk on boundary method, Monte Carlo Methods Appl. 15 (2009), 3, 257–284. 10.1515/MCMA.2009.015Search in Google Scholar
21 S. Steisunas, On the sojourn time of the Brownian process in a multidimensional sphere, Nonlinear Anal. Model. Control 14 (2009), 3, 389–396. 10.15388/NA.2009.14.3.14502Search in Google Scholar
© 2016 by De Gruyter