Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access March 4, 2017

Research Article. On memory, dimension, and atmospheric teleconnections

  • Terence. J. O’Kane , Didier P. Monselesan , James S. Risbey , Illia Horenko and Christian L. E. Franzke

Abstract

Using reanalysed atmospheric data and applying a data-driven multiscale approximation to non-stationary dynamical processes, we undertake a systematic examination of the role of memory and dimensionality in defining the quasi-stationary states of the troposphere over the recent decades. We focus on the role of teleconnections characterised by either zonally-oriented wave trains or meridional dipolar structures. We consider the impact of various strategies for dimension reduction based on principal component analysis, diagonalization and truncation.We include the impact of memory by consideration of Bernoulli, Markovian and non-Markovian processes. We a priori explicitly separate barotropic and baroclinic processes and then implement a comprehensive sensitivity analysis to the number and type of retained modes. Our results show the importance of explicitly mitigating the deleterious impacts of signal degradation through ill-conditioning and under sampling in preference to simple strategies based on thresholds in terms of explained variance. In both hemispheres, the results obtained for the dominant tropospheric modes depend critically on the extent to which the higher order modes are retained, the number of free model parameters to be fitted, and whether memory effects are taken into account. Our study identifies the primary role of the circumglobal teleconnection pattern in both hemispheres for Bernoulli and Markov processes, and the transient nature and zonal structure of the Southern Hemisphere patterns in relation to their Northern Hemisphere counterparts. For both hemispheres, overfitted models yield structures consistent with the major teleconnection modes (NAO, PNA and SAM), which give way to zonally oriented wavetrains when either memory effects are ignored or where the dimension is reduced via diagonalising. Where baroclinic processes are emphasised, circumpolar wavetrains are manifest.

References

[1] Akaike H., Information Theory and an Extension of the Maximum Likelihood Principle, in Selected Papers of Hirotugu Akaike, Eds. E. Parzen, K. Tanabe and G. Kitagawa, Springer, New York (1988).Search in Google Scholar

[2] Ambrizzi T., Hoskins B. J., Hsu H. -H. , Rossby wave propagation and teleconnection patterns in the austral winter, J. Atmos. Sci., 1995, 52(21), 3661-367210.1175/1520-0469(1995)052<3661:RWPATP>2.0.CO;2Search in Google Scholar

[3] Barnston A. G., Livezey R. E. , Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 1987, 115(6), 1083-112610.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2Search in Google Scholar

[4] Branstator G., Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation, J. Clim., 2002, 15(14), 1893-191010.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2Search in Google Scholar

[5] Bouchet F., Simonnet E., Random changes of flow topology in two-dimensional and geophysical turbulence, Phys. Rev. Lett., 2009, 102(9), 09450410.1103/PhysRevLett.102.094504Search in Google Scholar

[6] Charney J., DeVore J., Multiple flow equilibria in the atmosphere and blocking, J. Atmos. Sci., 1979, 36, 1205-121610.1175/1520-0469(1979)036<1205:MFEITA>2.0.CO;2Search in Google Scholar

[7] Franzke C. L. E., Horenko I., Majda A. J., Klein R., Systematic Metastable Atmospheric Regime Identification in an AGCM, J. Atmos. Sci., 2009, 66, 1998-201210.1175/2009JAS2939.1Search in Google Scholar

[8] Franzke C. L. E., O’Kane T. J., Monselesan D. P., Risbey J. S., Horenko I., Systematic attribution of observed Southern Hemispheric circulation trends to external forcing and internal variability, Nonlin. Processes Geophys. Discuss., 2015, 2, 675-70710.5194/npgd-2-675-2015Search in Google Scholar

[9] Frederiksen C. S., Zheng X., Grainger S., Simulated modes of inter-decadal predictability in sea surface temperature, Clim. Dyn., 2015, DOI 10.1007/s00382-015-2699-610.1007/s00382-015-2699-6Search in Google Scholar

[10] Giannakis, D., Majda A. J., Quantifying the Predictive Skill in Long-Range Forecasting. Part I: Coarse-grained predictions in a simple ocean model, J. Climate, 2012 25, 1793-181310.1175/2011JCLI4143.1Search in Google Scholar

[11] Giannakis, D., Majda A. J., Quantifying the Predictive Skill in Long-Range Forecasting. Part II: Model Error in Coarse- Grained Markov Models with Application to Ocean-Circulation Regimes, J. Climate, 2012, 25, 1814-182710.1175/JCLI-D-11-00110.1Search in Google Scholar

[12] Granger C. W. J., Some recent development in a concept of causality, Econometrics, 1988, 39, 199-21110.1016/0304-4076(88)90045-0Search in Google Scholar

[13] Horenko I., On Robust Estimation of Low-Frequency Variability Trends in Discrete Markovian Sequences of Atmospheric Circulation Patterns, J. Atmos. Sci., 2009, 66, 2059-207210.1175/2008JAS2959.1Search in Google Scholar

[14] Horenko I., On clustering of non-stationary meteorological time series, Dyn. Atmos. Oceans, 2010, 49, 164-18710.1016/j.dynatmoce.2009.04.003Search in Google Scholar

[15] Horenko I., On the identification of nonstationary factor models and their application to atmospheric data analysis, J. Atmos. Sci., 2010, 67 (5), 1559-157410.1175/2010JAS3271.1Search in Google Scholar

[16] Horenko I., Finite Element Approach to Clustering of Multidimensional Time Series, SIAM J. Sci. Comput., 2010, 31(1), 62-8310.1137/080715962Search in Google Scholar

[17] Horenko I., On the analysis of nonstationary categorical data time series: dynamical dimension reduction, model selection, and applications to computational sociology. Multiscale Model. Simul., 2011, 9(4), 1700-172610.1137/100790549Search in Google Scholar

[18] Horenko I., Gerber S., O’Kane T. J., Risbey J. S., Monselesan D. P., On Inference and Validation of Causality Relations in Climate Teleconnections, 2017, Chapt. 5, 136-159, Nonlinear and Stochastic Climate Dynamics, Eds Franzke, C. L. E. and T. J. O’Kane, 483pp, Cambridge University Press, Cambridge UKSearch in Google Scholar

[19] Hoskins, B. J. and T. Ambrizzi, Rossby wave propagation on a realistic longitudinally varying flow, J. Atmos. Sci., 1993, 50, 1661-1671 10.1175/1520-0469(1993)050<1661:RWPOAR>2.0.CO;2Search in Google Scholar

[20] Hurrell J. W., Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science, 1995, 269, 676-67910.1126/science.269.5224.676Search in Google Scholar

[21] Kalnay E., and Coauthors, The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 1996, 77, 437-471 doi:10.1175/1520-0477(1996)077,0437:TNYRP.2.0.CO;2.Search in Google Scholar

[22] Kitsios V., Frederiksen J. S., Zidikheri M. J., Subgrid model with scaling laws for atmospheric simulations J. Atmos. Sci., 2012, 69 1427-144510.1175/JAS-D-11-0163.1Search in Google Scholar

[23] Kobayashi, S., Ota Y., Harada Y., Ebita A., Moriya M. , Onoda H., Onogi K., Kamahori H., Kobayashi C., Endo H., Miyaoka K., and Takahashi K., The JRA-55 Reanalysis: General Specifications and Basic Characteristics, J. Meteor. Soc. Japan, 2015, 93(1), 5-4810.2151/jmsj.2015-001Search in Google Scholar

[24] Kraichnan R. H., Inertial Ranges in Two-Dimensional Turbulence Phys. Fluids, 1967, 10(7), 1417-142310.1063/1.1762301Search in Google Scholar

[25] Lau K.-M., Shey P.-J., Kang I.-S. , Multiscale low-frequency circulation modes in the global atmosphere, J. Atmos. Sci., 1994, 51, 1169-119310.1175/1520-0469(1994)051<1169:MLFCMI>2.0.CO;2Search in Google Scholar

[26] Legras B. and Ghil M., Persistent anomalies, blocking and variations in atmospheric predictability, J. Atmos. Sci., 1985, 42(5), 432-47110.1175/1520-0469(1985)042<0433:PABAVI>2.0.CO;2Search in Google Scholar

[27] Leith C. E., Nonlinear normal mode initialization and quasigeostrophic theory, J. Atmos. Sci., 1980, 37 958-96810.1175/1520-0469(1980)037<0958:NNMIAQ>2.0.CO;2Search in Google Scholar

[28] Lorenz E., Seasonal and irregular variations of the Northern Hemisphere sea-level pressure profile, J. Meteor., 1951 8, 52-5910.1175/1520-0469(1951)008<0052:SAIVOT>2.0.CO;2Search in Google Scholar

[29] Lorenz E. N., Attractor sets and quasi-geostrophic equilibrium, J. Atmos. Sci., 1980, 37 1685-169910.1175/1520-0469(1980)037<1685:ASAQGE>2.0.CO;2Search in Google Scholar

[30] Majda A. J., Franzke C. L., Fischer A., Crommelin D. T., Distinct metastable atmospheric regimes despite nearly Gaussian statistics: A paradigm model, Proc. Natl. Acad. Sci. USA, 2006, 103, 8309-831410.1073/pnas.0602641103Search in Google Scholar

[31] Majda, A. J., Gershgorin B., Crommelin D., Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci. USA, 2009, 106, 3649-365310.1073/pnas.0900173106Search in Google Scholar

[32] Metzner P., Putzig L., Horenko I., Analysis of persistent nonstationary time series and applications, Comm. Appl. Math. Comp. Sci., 2012, 7(2), 175-22910.2140/camcos.2012.7.175Search in Google Scholar

[33] Mo K. C., Higgins R. W., The Pacific-South American Modes and Tropical Convection during the Southern Hemisphere Winter, J. Atmos. Sci., 1988, 126, 1581-159610.1175/1520-0493(1998)126<1581:TPSAMA>2.0.CO;2Search in Google Scholar

[34] Nadiga B. T., O’Kane T. J., Low-Frequency Regime Transitions and Predictability of Regimes in a Barotropic Model, 2017, Chapt. 5, 136-159, Nonlinear and Stochastic Climate Dynamics, Eds Franzke, C. L. E. and T. J. O’Kane, 483pp, Cambridge University Press, Cambridge UK10.1017/9781316339251.006Search in Google Scholar

[35] O’Kane T. J., Frederiksen J. S., Statistical dynamical subgrid-scale parameterizations for geophysical flows, Phys. Scr., 2008, 132 01403310.1088/0031-8949/2008/T132/014033Search in Google Scholar

[36] O’Kane T. J., Monselesan D. P., Risbey J. S., A multiscale re-examination of the Pacific South American pattern, Mon. Rev. Rev., 2017, 145(3), 379-40210.1175/MWR-D-16-0291.1Search in Google Scholar

[37] O’Kane T. J., Risbey J. S., Franzke C. L. E., Horenko I., Monselesan D. P., Changes in the meta-stability of the mid-latitude Southern Hemisphere circulation and the utility of nonstationary cluster analysis and split flow blocking indices as diagnostic tools, J. Atmos. Sci., 2013, 70(3), 824-84210.1175/JAS-D-12-028.1Search in Google Scholar

[38] O’Kane T.J., Risbey J. S., Monselesan D. P., Horenko I., Franzke C. L. E., On the dynamics of persistent states and their secular trends in the waveguides of the Southern Heisphere troposphere, Cli. Dynamics, 2015, DOI 10.1007/s00382-015-2786-810.1007/s00382-015-2786-8Search in Google Scholar

[39] Polvani L. M.,Waugh D.W., Correa G. J. P., Son S.W., Stratospheric ozone depletion: Themain driver of twentieth-century atmospheric circulation changes in the Southern Hemisphere, J. Clim. 2011, 24, 795-81210.1175/2010JCLI3772.1Search in Google Scholar

[40] Phillips N. A. Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model, Tellus, 1954, 6(x), 273-28610.1111/j.2153-3490.1954.tb01123.xSearch in Google Scholar

[41] Risbey J. S., O’Kane T. J., Monselesan D. P., Franzke C. L. E., Horenko I., Metastability of Northern Hemisphere teleconnection modes, J. Atmos. Sci., 2015, 72(1), 35-5410.1175/JAS-D-14-0020.1Search in Google Scholar

[42] Roscoe H. K., Haigh J. D., Influences of ozone depletion, the solar cycle and the QBO on the Southern Annular Mode Q. J. R. Meteorol. Soc, 2007, 133, 1855-186410.1002/qj.153Search in Google Scholar

[43] Thompson D.W., andWallace J. M., The Arctic Oscillation signature in thewintertime geopotential height and temperature fields. Geophys. Res. Lett., 1988, 25, 1297-130010.1029/98GL00950Search in Google Scholar

[44] Thompson, D.W., Wallace J. M., Annular modes in the extratropical circulation. Part I: Month to month variability J. Climate, 2000, textit13, 1000-101610.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2Search in Google Scholar

[45] Stolle, J., Lovejoy S., Schertzer D„ The temporal cascade structure of reanalyses and global circulation models Q. J. R. Meteorol. Soc. 2012, DOI:10.1002/qj.191610.1002/qj.1916Search in Google Scholar

[46] Vallis G., Atmospheric and Oceanic Fluid Dynamics, 2010, 745pp. Cambridge University Press, Cambridge UKSearch in Google Scholar

[47] Wallace J. M., Gutzler D. S., Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 1981, 109, 784-81210.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2Search in Google Scholar

[48] Zidikheri, M. J., Frederiksen, J. S., Stochastic modelling of unresolved eddy fluxes. Geophys. Astrophys. Fluid Dyn., 2010, 104, 323-348.10.1080/03091921003694701Search in Google Scholar

Received: 2016-10-11
Accepted: 2017-2-10
Published Online: 2017-3-4
Published in Print: 2017-1-1

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 30.5.2023 from https://www.degruyter.com/document/doi/10.1515/mcwf-2017-0001/html
Scroll to top button