Skip to content
BY 4.0 license Open Access Published by De Gruyter Open Access July 30, 2020

Expanding Grids for Efficient Cloud Dynamics Simulations Across Scales

  • David H. Marsico EMAIL logo and Samuel N. Stechmann

Abstract

With large eddy simulations (LES) and/or cloud-resolving models (CRMs), it is now possible to simultaneously simulate shallow and deep convection. However, using traditional methods, the computational expense is typically very large, due to the small grid spacings needed to resolve shallow clouds. Here, the main purpose is to present a method that is computationally less expensive by a factor of roughly 10 to 50. Unlike traditional grid stretching of only the vertical z grid spacing, the present method involves expansion of the grid spacing in all coordinate directions (x,y,z) and time t. A ˝ne grid spacing of O(10)-O(100) m can be used near the surface to resolve boundary layer turbulence, and the grid spacing expands to be O(1000) m at higher altitudes, which reduces computational cost while still resolving deep convection. Example simulations are conducted with a simpli˝ed LES/CRM in 2D to verify the theoretical cost savings.

MSC 2010: 76R10

References

[1] M. J. Berger and J. Oliger. Adaptive mesh re˝nement for hyperbolic partial differential equations. J. Comput. Phys., 53(3):484–512, 1984.10.1016/0021-9991(84)90073-1Search in Google Scholar

[2] E. Goodfriend, F. K. Chow, M. Vanella, and E. Balaras. Improving large-eddy simulation of neutral boundary layer flow across grid interfaces. Mon. Wea. Rev., 143(8):3310–3326, 2015.10.1175/MWR-D-14-00392.1Search in Google Scholar

[3] W. W. Grabowski. Towards global large eddy simulation: Super-parameterization revisited. J. Meteor. Soc. Japan, 94(4):327–344, 2016.Search in Google Scholar

[4] W. W. Grabowski and P. K. Smolarkiewicz. CRCP: a Cloud Resolving Convection Parameterization for modeling the tropical convecting atmosphere. Physica D: Nonlinear Phenomena, 133:171–178, 1999.Search in Google Scholar

[5] W. W. Grabowski, X. Wu, and M. W. Moncrieff. Cloud-resolving modeling of tropical cloud systems during Phase III of GATE. Part I: Two-dimensional experiments. J. Atmos. Sci., 53:3684–3709, December 1996.10.1175/1520-0469(1996)053<3684:CRMOTC>2.0.CO;2Search in Google Scholar

[6] W. W. Grabowski, X. Wu, M. W. Moncrieff, and W. D. Hall. Cloud-resolving modeling of cloud systems during Phase III of GATE. Part II: Effects of resolution and the third spatial dimension. J. Atmos. Sci., 55(21):3264–3282, 1998.Search in Google Scholar

[7] Wojciech W Grabowski, Hugh Morrison, Shin-Ichiro Shima, Gustavo C Abade, Piotr Dziekan, and Hanna Pawlowska. Modeling of cloud microphysics: Can we do better? Bulletin of the American Meteorological Society, 100(4):655–672, 2019.10.1175/BAMS-D-18-0005.1Search in Google Scholar

[8] R. Heinze, A. Dipankar, C. C. Henken, C. Moseley, et al. Large-eddy simulations over Germany using icon: a comprehensive evaluation. Q. J. Roy. Met. Soc., 143(702):69–100, 2017.Search in Google Scholar

[9] G. Hernandez-Duenas, A. J. Majda, L. M. Smith, and S. N. Stechmann. Minimal models for precipitating turbulent convection. J. Fluid Mech., 717:576–611, 2013.10.1017/jfm.2012.597Search in Google Scholar

[10] C. Jablonowski, M. Herzog, J. E. Penner, R. C. Oehmke, Q. F. Stout, B. van Leer, and K. G. Powell. Block-structured adaptive grids on the sphere: Advection experiments. Mon. Wea. Rev., 134(12):3691–3713, 2006.Search in Google Scholar

[11] F. Jansson, G. van den Oord, I. Pelupessy, J. H. Grönqvist, A. P. Siebesma, and D. Crommelin. Regional superparameterization in a global circulation model using large eddy simulations. J. Adv. Model. Earth Syst., page in press, 2019.10.1029/2018MS001600Search in Google Scholar

[12] M. Khairoutdinov and D. Randall. High-resolution simulation of shallow-to-deep convection transition over land. J. Atmos. Sci., 63(12):3421–3436, 2006.10.1175/JAS3810.1Search in Google Scholar

[13] M. F. Khairoutdinov, S. K. Krueger, C.-H. Moeng, P. A. Bogenschutz, and D. A. Randall. Large-eddy simulation of maritime deep tropical convection. J. Adv. Model. Earth Syst., 1(4), 2009.10.3894/JAMES.2009.1.15Search in Google Scholar

[14] M. A. Kopera and F. X. Giraldo. Analysis of adaptive mesh re˝nement for imex discontinuous Galerkin solutions of the compressible Euler equations with application to atmospheric simulations. J. Comput. Phys., 275:92–117, 2014.10.1016/j.jcp.2014.06.026Search in Google Scholar

[15] M. A. Kopera and F. X. Giraldo. Mass conservation of the unified continuous and discontinuous element-based galerkin methods on dynamically adaptive grids with application to atmospheric simulations. J. Comput. Phys., 297:90–103, 2015.10.1016/j.jcp.2015.05.010Search in Google Scholar

[16] S. Marras, M. A. Kopera, and F. X. Giraldo. Simulation of shallow-water jets with a unified element-based continuous/discontinuous Galerkin model with grid flexibility on the sphere. Q. J. Roy. Met. Soc., 141(690):1727–1739, 2015.10.1002/qj.2474Search in Google Scholar

[17] D. H. Marsico, L. M. Smith, and S. N. Stechmann. Energy decompositions for moist Boussinesq and anelastic equations with phase changes. Journal of the Atmospheric Sciences, page in press, 2019.10.1175/JAS-D-19-0080.1Search in Google Scholar

[18] L. Orf, R. Wilhelmson, B. Lee, C. Finley, and A. Houston. Evolution of a long-track violent tornado within a simulated supercell. Bull. Amer. Meteor. Soc., 98(1):45–68, 2017.10.1175/BAMS-D-15-00073.1Search in Google Scholar

[19] H. Parishani, M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov. Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence. J. Adv. Model. Earth Syst., 9(3):1542–1571, 2017.10.1002/2017MS000968Search in Google Scholar

[20] N. A. Phillips and J. Shukla. On the strategy of combining coarse and fine grid meshes in numerical weather prediction. J. Atmos. Sci., 12(5):763–770, 1973.10.1175/1520-0450(1973)012<0763:OTSOCC>2.0.CO;2Search in Google Scholar

[21] D. Randall, M. Khairoutdinov, A. Arakawa, and W. Grabowski. Breaking the cloud parameterization deadlock. Bull. Amer. Meteor. Soc., 84:1547–1564, November 2003.10.1175/BAMS-84-11-1547Search in Google Scholar

[22] M. Satoh, T. Matsuno, H. Tomita, H. Miura, T. Nasuno, and S.-I. Iga. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations. J. Comput. Phys., 227(7):3486–3514, 2008.10.1016/j.jcp.2007.02.006Search in Google Scholar

[23] M. Satoh, B. Stevens, F. Judt, M. Khairoutdinov, S.-J. Lin, W. M. Putman, and P. Düben. Global cloud-resolving models. Curr. Clim. Change. Rep., 5(3):172–184, 2019.10.1007/s40641-019-00131-0Search in Google Scholar

[24] T. Schneider, S. Lan, A. Stuart, and J. Teixeira. Earth system modeling 2.0: A blueprint for models that learn from observations and targeted high-resolution simulations. Geophys. Res. Lett., 44(24), 2017.10.1002/2017GL076101Search in Google Scholar

[25] Axel Seifert, Thijs Heus, Robert Pincus, and Bjorn Stevens. Large-eddy simulation of the transient and near-equilibrium behavior of precipitating shallow convection. Journal of Advances in Modeling Earth Systems, 7(4):1918–1937, 2015.10.1002/2015MS000489Search in Google Scholar

[26] Shin-ichiro Shima, Kanya Kusano, Akio Kawano, Tooru Sugiyama, and Shintaro Kawahara. The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model. Quarterly Journal of the Royal Meteorological Society, 135(642):1307–1320, 2009.Search in Google Scholar

[27] A.P. Siebesma, C.S. Bretherton, A. Brown, A. Chlond, J. Cuxart, P.G. Duynkerke, H. Jiang, M. Khairoutdinov, D. Lewellen, C.H. Moeng, et al. A large eddy simulation intercomparison study of shallow cumulus convection. J. Atmos. Sci., 60(10):1201–1219, 2003.10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2Search in Google Scholar

[28] W. C Skamarock and J. B. Klemp. Adaptive grid refinement for two-dimensional and three-dimensional nonhydrostatic atmospheric flow. Mon. Wea. Rev., 121(3):788–804, 1993.10.1175/1520-0493(1993)121<0788:AGRFTD>2.0.CO;2Search in Google Scholar

[29] A. Staniforth. Regional modeling: A theoretical discussion. Meteorol. Atmos. Phys., 6(1):15–29, 1997.Search in Google Scholar

[30] S. N. Stechmann. Multiscale eddy simulation for moist atmospheric convection: Preliminary investigation. J. Comput. Phys., 271:99–117, 2014.Search in Google Scholar

[31] P. P. Sullivan, J. C. McWilliams, and C.-H. Moeng. A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorology, 80(1):167–202, 1996.10.1007/BF00119016Search in Google Scholar

[32] H. Tomita, H. Miura, S. Iga, T. Nasuno, and M. Satoh. A global cloud-resolving simulation: Preliminary results from an aqua planet experiment. Geophys. Res. Lett, 32(8), 2005.10.1029/2005GL022459Search in Google Scholar

Received: 2020-02-22
Accepted: 2020-06-24
Published Online: 2020-07-30

© 2020 David H. Marsico et al., published by De Gruyter

This work is licensed under the Creative Commons Attribution 4.0 International License.

Downloaded on 4.10.2023 from https://www.degruyter.com/document/doi/10.1515/mcwf-2020-0101/html
Scroll to top button