Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access August 12, 2016

A photonic self-oscillator based on porous silicon

  • N. Sánchez Castro , M. A. Palomino-Ovando , D. Estrada-Wiese , J. A. del Río , M. B. de la Mora , R. Doti , J. Faubert and J. E. Lugo
From the journal Open Material Sciences

Abstract

We induced mechanical self-oscillations in a microcavity structure made of porous silicon onedimensional photonic crystals (PSi-1DPC) with an air gap. The electromagnetic force generated within the whole photonic structure, by light with a wavelength of 633 nm, is enough to overcome energy losses and sustain selfoscillations. From these mechano-optical measurements we estimated the stiffness and Young’s modulus of porous silicon and compared the results with values reported elsewhere and with values estimated herein by a mechanical method.We obtained good agreement between all values.

References

[1] De Stefano, L., Moretti, L., Lamberti, A., Longo, O., Rocchia, M., Rossi, A. M. and Rendina, I, Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology, IEEE. T. Nanotechnol., 2004, 3. 10.1117/12.498999Search in Google Scholar

[2] Torres-Costa, V. and Martin-Palma, R. J, Application of nanostructured porous silicon in the field of optics. A review, J.Mater. Sci., 2010, 45. 10.1007/s10853-010-4251-8Search in Google Scholar

[3] J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals Molding the Flow of Light, Princenton University Press, Princeton and Oxford, 2008. Search in Google Scholar

[4] J. E. Lugo, H. A. Lopez, S. Chan and P. M. Fauchet, Porous silicon multilayer structures: a photonic band gap analysis, J. Appl. Phys., 2002, 91. 10.1063/1.1461898Search in Google Scholar

[5] Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, A dielectric omnidirectional reflector Science, 1998, 282. 10.1126/science.282.5394.1679Search in Google Scholar PubMed

[6] V. Agarwal, J. A. del Río, G. Malpuech, M. Zamfirescu, A. Kavokin, D. Coquillat, D. Scalbert, M. Vladimirova and B. Gil, Photon Bloch oscillations in porous silicon optical superlattices, Phys. Rev. Lett., 2004, 92. 10.1103/PhysRevLett.92.097401Search in Google Scholar PubMed

[7] J. O. Estevez, J. A. Arriaga, A. Mendez-Blas, E. Reyes-Ayona, J. Escorcia, and V. Agarwal, Demonstration of photon Bloch oscillations and Wannier-Stark ladders in dual-periodical multilayer structures based on porous silicon, Nanos. Res. Lett., 2012, 7. 10.1186/1556-276X-7-413Search in Google Scholar PubMed PubMed Central

[8] G. A. Rodriguez, J. L. Lawrie, and S. M. Weiss, H. A. Santos (Ed.), Porous silicon biosensors for DNA sensing, Porous Silicon for Biomedical Applications, Woodhead Publishing Ltd., 2014. 10.1533/9780857097156.2.304Search in Google Scholar

[9] J. E. Lugo, R. Doti, and J. Faubert, Negative refraction angular characterization in one-dimensional photonic crystals, PLoS ONE, 2011, 6. 10.1371/journal.pone.0017188Search in Google Scholar PubMed PubMed Central

[10] J. E. Lugo, R. Doti, N. Sanchez, M.B. de la Mora, J.A. del Rio and J. Faubert, The bifoil photodyne: a photonic crystal oscillator, Sci. Rep., 2014, 4. 10.1038/srep03705Search in Google Scholar PubMed PubMed Central

[11] J. E. Lugo, J, R. Doti, N. Sanchez and J. Faubert, Inducing forced and auto-oscillations in one-dimensional photonic crystalswith light, J. Nanophotonics., 2014, 8. 10.1117/12.2064363Search in Google Scholar

[12] A. A. Andronov, A. A. Vitt and S. E. Khakin, Theory of Oscillators, W. Fishwick NY, 1987. Search in Google Scholar

[13] A. V. Panfilov, R. H. Keldermann and M. P. Nash, Self-organized pacemakers in a coupled reaction-diffusion-mechanics system, Phys. Rev. Lett., 2005, 95. 10.1103/PhysRevLett.95.258104Search in Google Scholar

[14] P. Kohl, P. Hunter and D. Noble, Stretch-induced changes in heart rate and rhythm: clinical observations, experiments and mathematical models, Prog. Biophys. Molec. Biol., 1999, 71. 10.1016/S0079-6107(98)00038-8Search in Google Scholar

[15] A. Jenkins., Self-oscillation, Phys. Rep., 2013, 525. 10.1016/j.physrep.2012.10.007Search in Google Scholar

[16] Yoshida, R., Takahashi, T., Yamaguchi, T. and Ichijo, H., Selfoscillating gel. J. Am. Chem. Soc., 1996, 118. 10.1021/ja9602511Search in Google Scholar

[17] Yoshida, R. and Ueki, T., Evolution of self-oscillating polymer gels as autonomous polymer systems. NPG Asia Mater., 2014, 6. 10.1038/am.2014.32Search in Google Scholar

[18] Nava, R., de la Mora, M. B., Taguena-Martinez, J. and del Rıo, J. A. Refractive index contrast in porous silicon multilayers, Phys. Status. Solidi. C., 2009, 6. 10.1002/pssc.200881090Search in Google Scholar

[19] Mizrahi, A., Optical bragg accelerators, Phys. Rev. E., 2004, 70. 10.1103/PhysRevE.70.016505Search in Google Scholar PubMed

[20] Pochi Yeh, Optical waves in layered media, Wiley and Sons, 2005. Search in Google Scholar

[21] Li, Y., Svitelskiy, O. V., Maslov, A. V., Carnegie, D., Rafailov, E. and Astratov, V. N. Giant resonant light forces in microspherical photonics, Light. Sci. Appl., 2013, 2. 10.1364/CLEO_SI.2013.CW3F.6Search in Google Scholar

[22] Canham, L., Handbook of Porous Silicon, Springer, 2014. 10.1007/978-3-319-05744-6_16Search in Google Scholar

Received: 2016-4-1
Accepted: 2016-7-5
Published Online: 2016-8-12

© 2016 N. Sánchez Castro et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 26.3.2023 from https://www.degruyter.com/document/doi/10.1515/mesbi-2016-0003/html
Scroll Up Arrow