Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 17, 2016

Porous Silicon as a Sensitizer for Biomedical Applications

  • Liubov A. Osminkina and Victor Yu. Timoshenko
From the journal Open Material Sciences

Abstract

Porous silicon (PSi) can activate (sensitize) biochemical reactions and physical processes of the energy dissipation under excitation (stimulus) by light illumination, ultrasound (US), and electromagnetic radiofrequency (RF) irradiation. Photosensitized biochemical effects of PSi layers and nanoparticles (NPs)were explored in numerous physical studies and biomedical experiments in vitro. The photothermal sensitizing with mesoporous PSi NPs was demonstrated to be efficient for the hyperthermia of cancer cells and tumors in small animal models. The sonosensitizing properties of bare PSi NPs and dextran-coated ones were revealed by both the physical studies and biomedical experiments, which indicated a good prospect for their applications in sonodynamic therapy of cancer. RF-induced hyperthermia sensitized by PSi NPs has been successfully used to destroy cancer cells and tumors in vitro and in vivo, respectively. Here, we review the results on the preparation, physical properties, and applications of PSi NPs as sensitizers for mild therapy of cancer.

References

[1] L. T. Canham, Bioactive silicon structure fabrication through nanoetching techniques, Adv. Mater. 7, 1995, 1033. Search in Google Scholar

[2] L. T. Canham, Nanoscale semiconducting silicon as a nutritional food additive, Nanotechnology 18, 2007, 185704. 10.1088/0957-4484/18/18/185704Search in Google Scholar

[3] Low S. P. and Voelcker N. H., Biocompatibility of Porous Silicon, In: Canham L.T. (Ed.), Handbook of Porous Silicon, Springer Int. Publ. Switzerland, 2014, pp.381-394. 10.1007/978-3-319-05744-6_38Search in Google Scholar

[4] Canham L. and Ferguson D., Porous Silicon in Brachytherapy, In: Canham L.T. (Ed.), Handbook of Porous Silicon, Springer Int. Publ. Switzerland, 2014, pp.901-908. 10.1007/978-3-319-05744-6_90Search in Google Scholar

[5] Salonen J., Drug Delivery with Porous Silicon, In: Canham L.T. (Ed.), Handbook of Porous Silicon, Springer Int. Publ. Switzerland, 2014, pp.909-920. 10.1007/978-3-319-05744-6_91Search in Google Scholar

[6] E. Tasciotti, X. Liu, R. Bhavane, K. Plant, A. D. Leonard, B. K. Price, M. M.-C. Cheng, P. Decuzzi, J. M. Tour, F. Robertson, M. Ferrari, Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotechnol. 3(3), 2008, 151. 10.1038/nnano.2008.34Search in Google Scholar PubMed

[7] L. M. Bimbo, E. Mäkilä, T. Laaksonen, V. P. Lehto, J. Salonen, J. Hirvonen, H. A. Santos, Drug permeation across intestinal epithelial cells using porous silicon nanoparticles, Biomaterials 32 (10), 2011, 2625. 10.1016/j.biomaterials.2010.12.011Search in Google Scholar PubMed

[8] E. Tasciotti, B. Godin, J. O. Martinez, C. Chiappini, R. Bhavane, X. Liu, M. Ferrari, Near-infrared imaging method for the in vivo assessment of the biodistribution of nanoporous silicon particles, Mol. Imag. 10 (1), 2011, 56. 10.2310/7290.2011.00011Search in Google Scholar

[9] H. A. Santos, E. Mäkilä, A. J. Airaksinen, L. M. Bimbo, J. Hirvonen, Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine 9 (4), 2014, 535. 10.2217/nnm.13.223Search in Google Scholar PubMed

[10] F. Fontana, D. Liu, J. Hirvonen, H. A. Santos, Delivery of therapeutics with nanoparticles: what’s new in cancer immunotherapy? WIREs Nanomed. Nanobiotechnol., 2016, doi: 10.1002/wnan.1421. 10.1002/wnan.1421Search in Google Scholar PubMed

[11] J.-H. Park, L.Gu, G.v. Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications, Nat. Mater. 8, 2009, 331. 10.1038/nmat2398Search in Google Scholar PubMed PubMed Central

[12] Timoshenko V. Yu., Porous Silicon in Photodynamic and Photothermal Therapy, In: Canham L.T. (Ed.), Handbook of Porous Silicon, Springer Int. Publ. Switzerland, 2014, pp.929-936. 10.1007/978-3-319-05744-6_93Search in Google Scholar

[13] V. Chirvony, V. Bolotin, E. Matveeva, V. Parkhutik, Fluorescence and 1O2 generation properties of porphyrin molecules immobilized in oxidized nano-porous siliconmatrix, J. Photochem. Photobiol. A: Chem. 181(1), 2006, 106. 10.1016/j.jphotochem.2005.11.008Search in Google Scholar

[14] V. Chirvony, A. Chyrvonaya, J. Ovejero, E. Matveeva, B. Goller, D. Kovalev, A. Huygens, P. de Witte, Surfactant-Modified Hydrophilic Nanostructured Porous Silicon for the Photosensitized Formation of Singlet Oxygen in Water. Adv. Mater. 19(19), 2007, 2967. 10.1002/adma.200602891Search in Google Scholar

[15] E. A. Konstantinova, V. A. Demin, V. Y. Timoshenko, P. K. Kashkarov, EPR diagnostics of the photosensitized generation of singlet oxygen on the surface of silicon nanocrystals. JETP Lett. 85(1), 2007, 59-62. 10.1134/S0021364007010122Search in Google Scholar

[16] C. Hong, J. Lee, M. Son, S. S. Hong, C. Lee, In-vivo cancer cell destruction using porous silicon nanoparticles. Anti-Cancer Drugs 22(10), 2011, 971. 10.1097/CAD.0b013e32834b859cSearch in Google Scholar PubMed

[17] G. E. Kotkovskiy, Y. A. Kuzishchin, I. L. Martynov, A. A. Chistyakov, I. Nabiev, The photophysics of porous silicon: technological and biomedical implications, Phys. Chem. Chem. Phys. 14 (40), 2012, 13890. 10.1039/c2cp42019hSearch in Google Scholar PubMed

[18] E. Secret, M. Maynadier, A. Gallud, M. Gary-Bobo, A. Chaix, E. Belamie, P. Maillard, M. J. Sailor, M. Garcia, J.-O. Durand, F. Cunin, Anionic porphyrin-grafted porous silicon nanoparticles for photodynamic therapy, Chem. Commun. 49, 2013, 4202. Search in Google Scholar

[19] E. Secret, M.Maynadier, A.Gallud, A. Chaix, E. Bouffard, M.Gary- Bobo, N. Marcotte, O. Mongin, K. E. Cheikh, V. Hugues, M. Auffan, C. Frochot, A. Morčre, P. Maillard, M. Blanchard-Desce, M. J. Sailor, M. Garcia, J.-O. Durand, F. Cunin, Two-Photon Excitation of Porphyrin-Functionalized Porous Silicon Nanoparticles for Photodynamic Therapy. Adv. Mater. 26 (45), 2014, 7643. 10.1002/adma.201403415Search in Google Scholar PubMed

[20] L.A. Osminkina, K.P. Tamarov, A.P. Sviridov, R.A. Galkin, M.B. Gongalsky, V.V. Solovyev, A. A. Kudryavtsev, V. Yu. Timoshenko, Photoluminescent biocompatible silicon nanoparticles for cancer theranostic applications, J. Biophot. 5, 2012, 529. 10.1002/jbio.201100112Search in Google Scholar PubMed

[21] L.A. Osminkina, M.B. Gongalsky, A.V. Motuzuk, V.Yu. Timoshenko, A.A. Kudryavtsev, Silicon nanocrystals as photo- and sono-sensitizers for biomedical applications, Appl. Phys. B: Lasers & Optics 105 (3), 2011, 665. 10.1007/s00340-011-4562-8Search in Google Scholar

[22] L.A. Osminkina, E.N. Luckyanova, M.B. Gongalsky, A.A. Kudryavtsev, A.Kh. Gaydarova, R.A. Poltavtseva, P.K. Kashkarov, V.Yu. Timoshenko, G.T. Sukhikh, Effects of Nanostructurized Silicon on Proliferation of Stem and Cancer Cell, Bull. Exper. Biol. & Med.: Nanotehnol. 151, 2011, 79. 10.1007/s10517-011-1264-5Search in Google Scholar PubMed

[23] A.P. Sviridov, V.G. Andreev, E.M. Ivanova, L.A. Osminkina, K.P. Tamarov, V.Yu. Timoshenko, Porous silicon nanoparticles as sensitizers for ultrasonic hyperthermia, Appl. Phys. Lett. 103, 2013, 193110. 10.1063/1.4829148Search in Google Scholar

[24] L.A. Osminkina, V.A. Sivakov, G.A. Mysov, V.A. Georgobiani, U.A. Natashina, F. Talkenberg, V.V. Solovyev, A.A. Kudryavtsev, V.Yu. Timoshenko, Nanoparticles prepared from porous silicon nanowires for bio-imaging and sonodynamic therapy, Nanosc. Res. Lett. 9, 2014, 463. 10.1186/1556-276X-9-463Search in Google Scholar PubMed PubMed Central

[25] L.A. Osminkina, A.L. Nikolaev, A.P. Sviridov, N.V. Andronova, K.P. Tamarov, M.B. Gongalsky, A.A. Kudryavtsev, H.M. Treshalina, V.Yu. Timoshenko. Porous silicon nanoparticles as eflcient sensitizers for sonodynamic therapy of cancer, Micropor. Mesopor. Mat. 210, 2015, 169. 10.1016/j.micromeso.2015.02.037Search in Google Scholar

[26] A.P. Sviridov, L.A. Osminkina, A.L. Nikolaev, A.A. Kudryavtsev, A.N. Vasiliev, V.Yu. Timoshenko, Lowering of the cavitation threshold in aqueous suspensions of porous silicon nanoparticles for sonodynamic therapy applications, Appl. Phys. Lett. 107, 2015, 123107. 10.1063/1.4931728Search in Google Scholar

[27] K.P. Tamarov, L.A. Osminkina, S.V. Zinovyev, K.A.Maximova, J.V. Kargina, M.B.Gongalsky, Yu. Ryabchikov,A.Al-Kattan, A.P. Sviridov, M. Sentis, A.V. Ivanov, V.N. Nikiforov, A.V. Kabashin, V. Yu. Timoshenko, Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy, Sci. Rep. 4, 2014, 7034. Search in Google Scholar

[28] K. P. Tamarov, A. P. Kanavin, V. Yu. Timoshenko, A. V. Kabashin, I. N. Zavestovskaya, Modeling of heat release in aqueous suspensions of solid-state nanoparticles under electromagnetic radiofrequency irradiation. Proc. SPIE LASE 9737, 2016, 973706. 10.1117/12.2222813Search in Google Scholar

[29] K. Greish, Enhanced Permeability and Retention (EPR) Effect for Anticancer Nanomedicine Drug Targeting, Protoc. Cancer Nanotechn. 624, 20110, in the Series “Methods in Molecular Biology”, pp. 25-37. 10.1007/978-1-60761-609-2_3Search in Google Scholar PubMed

[30] Y. H. Bae, K. Park, Targeted drug delivery to tumors: Myths, reality and possibility, J. Controll. Release 153, 2011, 198–205. 10.1016/j.jconrel.2011.06.001Search in Google Scholar PubMed PubMed Central

[31] A.G. Cullis, L.T. Canham, P.D.J. Calcott, The structural and luminescence properties of porous silicon, J. Appl. Phys. 82, 1997, 909. 10.1063/1.366536Search in Google Scholar

[32] L.A. Osminkina, V.Yu Timoshenko, I.P. Shilovsky, G.V. Kornilaeva, S.N. Shevchenko, M.B.Gongalsky, K.P. Tamarov, S.S. Abramchuk, V.N. Nikiforov, M.R. Khaitov, E.V. Karamov, Porous silicon nanoparticles as scavengers of hazardous viruses, J. Nanopart. Res. 16, 2014, 2430. Search in Google Scholar

[33] M.B. Gongalsky, A.Yu. Kharin, L.A. Osminkina, V.Yu Timoshenko, J.J. Jeong, H. Lee, B.H. Chung, Enhanced photoluminescence of porous silicon nanoparticles coated by bioresorbable polymers, Nanosc. Res. Lett. 7, 2012, 446. 10.1186/1556-276X-7-446Search in Google Scholar PubMed PubMed Central

[34] D. Kovalev, E. Gross, N. Künzner, F. Koch, V.Yu. Timoshenko, Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules. M. Fujii, Phys. Rev. Lett. 89, 2002, 137401. 10.1103/PhysRevLett.89.137401Search in Google Scholar PubMed

[35] E. Gross, D. Kovalev, N. Künzner, F. Koch, V. Vu. Timoshenko, M. Fujii, Spectrally resolved electronic energy transfer from silicon nanocrystals to molecular oxygen mediated by direct electron exchange, Phys. Rev. B 68, 2003, 115405. 10.1103/PhysRevB.68.115405Search in Google Scholar

[36] V. Yu. Timoshenko, A. A. Kudryavtsev, L. A. Osminkina, A. S. Vorontzov, Yu. V. Ryabchikov, I. A. Belogorokhov, D. Kovalev, P.K. Kashkarov, Silicon nanocrystals as photosensitizers of active oxygen for biomedical applications, JETP Lett. 83, 2006, 423. 10.1134/S0021364006090128Search in Google Scholar

[37] S. P. Low, K. A. Williams, L. T. Canham, N. H. Voelcker, Generation of reactive oxygen species from porous silicon microparticles in cell culture medium, J. Biomed. Mater. Res. Part A 93, 2010, 1124. 10.1002/jbm.a.32610Search in Google Scholar PubMed

[38] L. Xiao, L. Gu, S.B. Howell, M.J. Sailor, Porous silicon nanoparticles photosensitizers for singlet oxygen and their phototoxicity against cancer cells, ACS Nano 5(5), 2011, 3651. 10.1021/nn1035262Search in Google Scholar PubMed PubMed Central

[39] Ch. Lee, H. Kim, Y. Cho, W. In Lee. The properties of porous silicon as a therapeutic agent via the new photodynamic therapy, J. Mat. Chem. 17, 2007, 2648. Search in Google Scholar

[40] Ch. Lee, H. Kim, Ch. Hong, M. Kim, S.-S. Hong, D. H. Lee, W. In Lee, Porous silicon as an agent for cancer thermotherapy based on near-infrared light irradiation, J.Mat. Chem. 18, 2008, 4790. Search in Google Scholar

[41] Ch. Lee, Ch. Hong, J. Lee, M. Son, S.-S. Hong, Comparison of oxidized porous silicon with bare porous silicon as a photothermal agent for cancer cell destruction based on in vitro cell test results, Las. Med. Sci. 27, 2012, 1001. Search in Google Scholar

[42] Ch. Hong, J. Lee, H. Zheng, S.-S. Hong, Ch. Lee. Porous silicon nanoparticles for cancer photothermotherapy. Nanosc. Res. Lett. 6, 2011, 321. 10.1186/1556-276X-6-321Search in Google Scholar PubMed PubMed Central

[43] Ch. Hong, Ch. Lee, In vitro cell tests of pancreatic malignant tumor cells by photothermal therapy based on DMSO porous silicon colloids, Las. Med. Sci. 29(1), 2014, 221. 10.1007/s10103-013-1316-3Search in Google Scholar PubMed

[44] S. Umemura, N. Yumita, R. Nishigaki, K. Umemura, Mechanism of Cell Damage by Ultrasound in Combination with Hematoporphyrin, Jpn. J. Cancer Res. 81, 1990, 962. 10.1111/j.1349-7006.1990.tb02674.xSearch in Google Scholar PubMed PubMed Central

[45] N. Yumita, N. Okuyama, K. Sasaki, S. Umemura, Sonodynamic therapy on chemically induced mammary tumor: pharmacokinetics, tissue distribution and sonodynamically induced antitumor effect of gallium–porphyrin complex ATX-70, Cancer Chemother. Pharmacol. 60, 2007, 891. 10.1007/s00280-007-0436-5Search in Google Scholar PubMed

[46] L. Serpe, F. Foglietta, R. Canapar, Nanosonotechnology: The next challenge in cancer sonodynamic therapy, Nanotechnol. Rev. 1, 2012, 173. 10.1515/ntrev-2011-0009Search in Google Scholar

[47] L. Yildirimer, N.T.K. Thanh, M. Loizidou, A.M. Seifalian, Toxicology and clinical potential of nanoparticles, Nano Today 6, 2011, 585. 10.1016/j.nantod.2011.10.001Search in Google Scholar PubMed PubMed Central

Received: 2016-7-22
Accepted: 2016-9-18
Published Online: 2016-10-17

© 2016 Liubov A. Osminkina and Victor Yu. Timoshenko

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 3.2.2023 from https://www.degruyter.com/document/doi/10.1515/mesbi-2016-0005/html
Scroll Up Arrow