Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 16, 2016

Molecular imprinted photonic crystal for sensing of biomolecules

  • Wei Chen , Zihui Meng , Min Xue and Kenneth J Shea
From the journal Molecular Imprinting

Abstract

Molecularly imprinted polymers (MIPs) are highly cross-linked polymers with high binding capacity and selectivity to the target molecules. MIPs become increasingly important because of the potential applications in drug delivery, purification and separation. In spite of the tremendous progress that has been made in the molecular imprinting field, many challenges remain to be addressed, especially in transforming the binding event into a detectable optical signal. The combination of photonic crystal and molecular imprinting technique is becoming a popular research idea. Compared to the conventional MIPs, the molecularly imprinted photonic crystal sensors (MIPCB) have the advantage of directly convert the molecule recognition process into optical signal. This review comprehensively summarizes various MIPCB, including the principle of molecular imprinted photonic crystal sensors, recent development, some challenges and effective strategies for MIPCB.

References

[1] Katz, E.; Willner, I., Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications. Angewandte Chemie International Edition 2004, 43 (45), 6042-6108. 10.1002/anie.200400651Search in Google Scholar PubMed

[2] Zhu, C.; Zeng, Z.; Li, H.; Li, F.; Fan, C.; Zhang, H., Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. Journal of the American Chemical Society 2013, 135 (16), 5998-6001. 10.1021/ja4019572Search in Google Scholar PubMed

[3] Xu, J.-J.; Zhao, W.-W.; Song, S.; Fan, C.; Chen, H.-Y., Functional nanoprobes for ultrasensitive detection of biomolecules: an update. Chemical Society Reviews 2014, 43 (5), 1601-1611. 10.1039/C3CS60277JSearch in Google Scholar

[4] Bi, S.; Zhao, T.; Luo, B., A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chemical Communications 2012, 48 (1), 106-108. 10.1039/C1CC15443ESearch in Google Scholar PubMed

[5] Wang, X.; Mu, Z.; Liu, R.; Pu, Y.; Yin, L., Molecular imprinted photonic crystal hydrogels for the rapid and label-free detection of imidacloprid. Food chemistry 2013, 141 (4), 3947-3953. 10.1016/j.foodchem.2013.06.024Search in Google Scholar PubMed

[6] Karikó, K.; Muramatsu, H.; Ludwig, J.; Weissman, D., Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic acids research 2011, 1-5. 10.1093/nar/gkr695Search in Google Scholar PubMed PubMed Central

[7] Nematollahzadeh, A.; Shojaei, A.; Abdekhodaie, M. J.; Sellergren, B., Molecularly imprinted polydopamine nano-layer on the pore surface of porous particles for protein capture in HPLC column. Journal of colloid and interface science 2013, 404, 117-126. Search in Google Scholar

[8] Collins, B. C.; Gillet, L. C.; Rosenberger, G.; Röst, H. L.; Vichalkovski, A.; Gstaiger, M.; Aebersold, R., Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14-3-3 system. Nature methods 2013, 10 (12), 1246-1253. 10.1038/nmeth.2703Search in Google Scholar PubMed

[9] Herzog, F.; Kahraman, A.; Boehringer, D.; Mak, R.; Bracher, A.; Walzthoeni, T.; Leitner, A.; Beck, M.; Hartl, F.-U.; Ban, N., Structural probing of a protein phosphatase 2A network by chemical cross-linking and mass spectrometry. Science 2012, 337 (6100), 1348-1352. Search in Google Scholar

[10] Liu, H.; Liu, X.; Meng, J.; Zhang, P.; Yang, G.; Su, B.; Sun, K.; Chen, L.; Han, D.; Wang, S., Hydrophobic Interaction‐Mediated Capture and Release of Cancer Cells on Thermoresponsive Nanostructured Surfaces. Advanced Materials 2013, 25 (6), 922-927. 10.1002/adma.201203826Search in Google Scholar PubMed

[11] Liu, S.-J.; Wen, Q.; Tang, L.-J.; Jiang, J.-H., Phospholipid– graphene nanoassembly as a fluorescence biosensor for sensitive detection of phospholipase D activity. Analytical chemistry 2012, 84 (14), 5944-5950. 10.1021/ac300539sSearch in Google Scholar PubMed

[12] Li, M.; Zhang, J.; Suri, S.; Sooter, L. J.; Ma, D.; Wu, N., Detection of adenosine triphosphate with an aptamer biosensor based on surface-enhanced Raman scattering. Analytical chemistry 2012, 84 (6), 2837-2842. 10.1021/ac203325zSearch in Google Scholar PubMed

[13] Li, M.; Cushing, S. K.; Zhang, J.; Suri, S.; Evans, R.; Petros, W. P.; Gibson, L. F.; Ma, D.; Liu, Y.; Wu, N., Three-dimensional hierarchical plasmonic nano-architecture enhanced surfaceenhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS nano 2013, 7 (6), 4967-4976. 10.1021/nn4018284Search in Google Scholar PubMed PubMed Central

[14] Huang, J.-A.; Zhao, Y.-Q.; Zhang, X.-J.; He, L.-F.; Wong, T.-L.; Chui, Y.-S.; Zhang, W.-J.; Lee, S.-T., Ordered Ag/Si nanowires array: wide-range surface-enhanced Raman spectroscopy for reproducible biomolecule detection. Nano letters 2013, 13 (11), 5039-5045. 10.1021/nl401920uSearch in Google Scholar PubMed

[15] Aroonyadet, N.; Wang, X.; Song, Y.; Chen, H.; Cote, R. J.; Thompson, M. E.; Datar, R. H.; Zhou, C., Highly Scalable, Uniform, and Sensitive Biosensors Based on Top-Down Indium Oxide Nanoribbons and Electronic Enzyme-Linked Immunosorbent Assay. Nano letters 2015, 15 (3), 1943-1951. 10.1021/nl5047889Search in Google Scholar PubMed

[16] Bhimji, A.; Zaragoza, A. A.; Live, L. S.; Kelley, S. O., Electrochemical enzyme-linked immunosorbent assay featuring proximal reagent generation: detection of human immunodeficiency virus antibodies in clinical samples. Analytical chemistry 2013, 85 (14), 6813-6819. 10.1021/ac4009429Search in Google Scholar PubMed

[17] Chen, P.; Chung, M. T.; McHugh, W.; Nidetz, R.; Li, Y.; Fu, J.; Cornell, T. T.; Shanley, T. P.; Kurabayashi, K., Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays. ACS nano 2015, 9 (4), 4173-4181. 10.1021/acsnano.5b00396Search in Google Scholar PubMed PubMed Central

[18] Choi, Y.-H.; Lee, G.-Y.; Ko, H.; Chang, Y. W.; Kang, M.-J.; Pyun, J.-C., Development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N film. Biosensors and Bioelectronics 2014, 56, 286-294. Search in Google Scholar

[19] Mizuno, N.; Takeshita, Y.; Kobayashi, J.; Esashika, K.; Saiki, T., Polarization-based immunoassay in aqueous solution using Au nanoparticle-labeled antibody. Applied Physics A 2014, 115 (1), 75-78. 10.1007/s00339-013-8042-3Search in Google Scholar

[20] Hu, X.; Li, G.; Huang, J.; Zhang, D.; Qiu, Y., Construction of Self‐Reporting Specific Chemical Sensors with High Sensitivity. Advanced Materials 2007, 19 (24), 4327-4332. 10.1002/adma.200701084Search in Google Scholar

[21] Zhao, Y. J.; Zhao, X. W.; Hu, J.; Li, J.; Xu, W. Y.; Gu, Z. Z., Multiplex Label‐Free Detection of Biomolecules with an Imprinted Suspension Array. Angewandte Chemie International Edition 2009, 48 (40), 7350-7352. 10.1002/anie.200903472Search in Google Scholar PubMed

[22] Wang, L.-Q.; Lin, F.-Y.; Yu, L.-P., A molecularly imprinted photonic polymer sensor with high selectivity for tetracyclines analysis in food. Analyst 2012, 137 (15), 3502-3509. 10.1039/c2an35460hSearch in Google Scholar PubMed

[23] Chen, W.; Lei, W.; Xue, M.; Xue, F.; Meng, Z.-h.; Zhang, W.-b.; Qu, F.; Shea, K. J., Protein recognition by a surface imprinted colloidal array. Journal of Materials Chemistry A 2014, 2 (20), 7165-7169. 10.1039/c4ta00048jSearch in Google Scholar

[24] Chen, W.; Xue, M.; Shea, K. J.; Meng, Z.; Yan, Z.; Wang, Z.; Xue, F.; Qu, F., Molecularly imprinted hollow sphere array for the sensing of proteins. Journal of Biophotonics 2014, 8 (10), 838-845. 10.1002/jbio.201400100Search in Google Scholar PubMed

[25] Hu, X.; An, Q.; Li, G.; Tao, S.; Liu, J., Imprinted photonic polymers for chiral recognition. Angewandte Chemie International Edition 2006, 45 (48), 8145-8148. 10.1002/anie.200601849Search in Google Scholar PubMed

[26] Zhang, Y.-X.; Zhao, P.-Y.; Yu, L.-P., Highly-sensitive and selective colorimetric sensor for amino acids chiral recognition based on molecularly imprinted photonic polymers. Sensors and Actuators B: Chemical 2013, 181, 850-857. Search in Google Scholar

[27] Liu, X.-Y.; Fang, H.-X.; Yu, L.-P., Molecularly imprinted photonic polymer based on β-cyclodextrin for amino acid sensing. Talanta 2013, 116, 283-289. Search in Google Scholar

[28] Pernites, R. B.; Venkata, S. K.; Tiu, B. D. B.; Yago, A. C. C.; Advincula, R. C., Nanostructured, Molecularly Imprinted, and Template‐Patterned Polythiophenes for Chiral Sensing and Differentiation. Small 2012, 8 (11), 1669-1674. 10.1002/smll.201102331Search in Google Scholar PubMed

[29] Wu, Z.; Hu, X.; Tao, C.-a.; Li, Y.; Liu, J.; Yang, C.; Shen, D.; Li, G., Direct and label-free detection of cholic acid based on molecularly imprinted photonic hydrogels. Journal of Materials Chemistry 2008, 18 (45), 5452-5458. 10.1039/b811189hSearch in Google Scholar

[30] Meng, L.; Meng, P.; Tang, B.; Zhang, Q.; Wang, Y., Molecularly imprinted photonic hydrogels for fast screening of atropine in biological samples with high sensitivity. Forensic science international 2013, 231 (1), 6-12. 10.1016/j.forsciint.2013.04.008Search in Google Scholar PubMed

[31] Sai, N.; Ning, B.; Huang, G.; Wu, Y.; Zhou, Z.; Peng, Y.; Bai, J.; Yu, G.; Gao, Z., An imprinted crystalline colloidal array chemicalsensing material for detection of trace diethylstilbestrol. Analyst 2013, 138 (9), 2720-2728. 10.1039/c3an36829gSearch in Google Scholar PubMed

[32] Hu, X.; Li, G.; Li, M.; Huang, J.; Li, Y.; Gao, Y.; Zhang, Y., Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels. Advanced Functional Materials 2008, 18 (4), 575-583. 10.1002/adfm.200700527Search in Google Scholar

[33] Li, J.; Zhang, Z.; Xu, S.; Chen, L.; Zhou, N.; Xiong, H.; Peng, H., Label-free colorimetric detection of trace cholesterol based on molecularly imprinted photonic hydrogels. Journal of Materials Chemistry 2011, 21 (48), 19267-19274. 10.1039/c1jm14230eSearch in Google Scholar

[34] Guo, C.; Zhou, C.; Sai, N.; Ning, B.; Liu, M.; Chen, H.; Gao, Z., Detection of bisphenol A using an opal photonic crystal sensor. Sensors and Actuators B: Chemical 2012, 166, 17-23. Search in Google Scholar

[35] Griffete, N.; Frederich, H.; Maître, A. s.; Ravaine, S.; Chehimi, M. M.; Mangeney, C., Inverse opals of molecularly imprinted hydrogels for the detection of bisphenol A and pH sensing. Langmuir 2011, 28 (1), 1005-1012. 10.1021/la202840ySearch in Google Scholar PubMed

[36] Sai, N.; Wu, Y.; Sun, Z.; Huang, G.; Gao, Z., Molecular imprinted opal closest-packing photonic crystals for the detection of trace 17β-estradiol in aqueous solution. Talanta 2015, 144, 157-162. Search in Google Scholar

[37] Peng, H.; Wang, S.; Zhang, Z.; Xiong, H.; Li, J.; Chen, L.; Li, Y., Molecularly imprinted photonic hydrogels as colorimetric sensors for rapid and label-free detection of vanillin. Journal of agricultural and food chemistry 2012, 60 (8), 1921-1928. 10.1021/jf204736pSearch in Google Scholar PubMed

[38] Kunath, S.; Panagiotopoulou, M.; Maximilien, J.; Marchyk, N.; Sänger, J.; Haupt, K., Cell and Tissue Imaging with Molecularly Imprinted Polymers as Plastic Antibody Mimics. Advanced healthcare materials 2015, 4 (9), 1322-1326. 10.1002/adhm.201500145Search in Google Scholar PubMed

[39] Reddy, S. M.; Phan, Q. T.; El-Sharif, H.; Govada, L.; Stevenson, D.; Chayen, N. E., Protein crystallization and biosensor applications of hydrogel-based molecularly imprinted polymers. Biomacromolecules 2012, 13 (12), 3959-3965. 10.1021/bm301189fSearch in Google Scholar PubMed

[40] Rossetti, C.; Abdel Qader, A.; Halvorsen, T. G.; Sellergren, B. r.; Reubsaet, L., Antibody-Free Biomarker Determination: Exploring Molecularly Imprinted Polymers for Pro-Gastrin Releasing Peptide. Analytical chemistry 2014, 86 (24), 12291-12298. 10.1021/ac503559cSearch in Google Scholar PubMed

[41] Ge, Y.; Turner, A. P., Too large to fit? Recent developments in macromolecular imprinting. Trends in biotechnology 2008, 26 (4), 218-224. 10.1016/j.tibtech.2008.01.001Search in Google Scholar PubMed

[42] Whitcombe, M. J.; Kirsch, N.; Nicholls, I. A., Molecular imprinting science and technology: A survey of the literature for the years 2004–2011. Journal of Molecular Recognition 2014, 27 (6), 297-401. 10.1002/jmr.2347Search in Google Scholar PubMed

[43] Pauling, L., A Theory of the Structure and Process of Formation of Antibodies*. Journal of the American Chemical Society 1940, 62 (10), 2643-2657. 10.1021/ja01867a018Search in Google Scholar

[44] Zhang, Y.; Qu, X.; Yu, J.; Xu, L.; Zhang, Z.; Hong, H.; Liu, C., 13 C NMR aided design of molecularly imprinted adsorbents for selectively preparative separation of erythromycin. Journal of Materials Chemistry B 2014, 2 (10), 1390-1399. 10.1039/C3TB21636ESearch in Google Scholar

[45] Gao, B.; Zhang, Y.; Xu, Y., Study on recognition and separation of rare earth ions at picometre scale by using efficient ion-surface imprinted polymer materials. Hydrometallurgy 2014, 150, 83-91. Search in Google Scholar

[46] Wulff, G. n.; Liu, J., Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization. Accounts of chemical research 2011, 45 (2), 239-247. 10.1021/ar200146mSearch in Google Scholar PubMed

[47] Li, S.; Ge, Y.; Tiwari, A.; Wang, S.; Turner, A. P.; Piletsky, S. A., ‘On/off’-switchable catalysis by a smart enzyme-like imprinted polymer. Journal of Catalysis 2011, 278 (2), 173-180. 10.1016/j.jcat.2010.11.011Search in Google Scholar

[48] Bakas, I.; Oujji, N. B.; Moczko, E.; Istamboulie, G.; Piletsky, S.; Piletska, E.; Ait-Ichou, I.; Ait-Addi, E.; Noguer, T.; Rouillon, R., Molecular imprinting solid phase extraction for selective detection of methidathion in olive oil. Analytica chimica acta 2012, 734, 99-105. Search in Google Scholar

[49] Chen, W.; Xue, M.; Xue, F.; Mu, X.; Xu, Z.; Meng, Z.; Zhu, G.; Shea, K. J., Molecularly imprinted hollow spheres for the solid phase extraction of estrogens. Talanta 2015, 140, 68-72. Search in Google Scholar

[50] Fuchs, Y.; Kunath, S.; Soppera, O.; Haupt, K.; Mayes, A. G., Molecularly Imprinted Silver‐Halide Reflection Holograms for Label‐Free Opto‐Chemical Sensing. Advanced Functional Materials 2014, 24 (5), 688-694. 10.1002/adfm.201301454Search in Google Scholar

[51] Sun, G.; Wang, P.; Ge, S.; Ge, L.; Yu, J.; Yan, M., Photoelectrochemical sensor for pentachlorophenol on microfluidic paper-based analytical device based on the molecular imprinting technique. Biosensors and Bioelectronics 2014, 56, 97-103. Search in Google Scholar

[52] Zaidi, S. A., Molecular imprinted polymers as drug delivery vehicles. Drug delivery 2014, (0), 1-10. Search in Google Scholar

[53] Zhang, Q.; Zhang, L.; Wang, P.; Du, S., Coordinate Bonding Strategy for Molecularly Imprinted Hydrogels: Toward pHResponsive Doxorubicin Delivery. Journal of pharmaceutical sciences 2014, 103 (2), 643-651. 10.1002/jps.23838Search in Google Scholar PubMed

[54] Li, X.; Zhang, B.; Li, W.; Lei, X.; Fan, X.; Tian, L.; Zhang, H.; Zhang, Q., Preparation and characterization of bovine serum albumin surface-imprinted thermosensitive magnetic polymer microsphere and its application for protein recognition. Biosensors and Bioelectronics 2014, 51, 261-267. Search in Google Scholar

[55] Yuan, S.; Deng, Q.; Fang, G.; Wu, J.; Li, W.; Wang, S., Protein imprinted ionic liquid polymer on the surface of multiwall carbon nanotubes with high binding capacity for lysozyme. Journal of Chromatography B 2014, 960, 239-246. Search in Google Scholar

[56] Ratautaite, V.; Topkaya, S. N.; Mikoliunaite, L.; Ozsoz, M.; Oztekin, Y.; Ramanaviciene, A.; Ramanavicius, A., Molecularly imprinted polypyrrole for DNA determination. Electroanalysis 2013, 25 (5), 1169-1177. 10.1002/elan.201300063Search in Google Scholar

[57] Eersels, K.; van Grinsven, B.; Ethirajan, A.; Timmermans, S.; Jiménez Monroy, K. L.; Bogie, J. F.; Punniyakoti, S.; Vandenryt, T.; Hendriks, J. J.; Cleij, T. J., Selective identification of macrophages and cancer cells based on thermal transport through surfaceimprinted polymer layers. ACS applied materials & interfaces 2013, 5 (15), 7258-7267. 10.1021/am401605dSearch in Google Scholar PubMed

[58] Cumbo, A.; Lorber, B.; Corvini, P. F.-X.; Meier, W.; Shahgaldian, P., A synthetic nanomaterial for virus recognition produced by surface imprinting. Nature communications 2013, 4, 1503. 10.1038/ncomms2529Search in Google Scholar PubMed

[59] Wangchareansak, T.; Thitithanyanont, A.; Chuakheaw, D.; Gleeson, M. P.; Lieberzeit, P. A.; Sangma, C., A novel approach to identify molecular binding to the influenza virus H5N1: screening using molecularly imprinted polymers (MIPs). MedChemComm 2014, 5 (5), 617-621. 10.1039/C3MD00272ASearch in Google Scholar

[60] Chen, L.; Xu, S.; Li, J., Recent advances in molecular imprinting technology: current status, challenges and highlighted applications. Chemical Society Reviews 2011, 40 (5), 2922-2942. 10.1039/c0cs00084aSearch in Google Scholar PubMed

[61] Shen, X.; Svensson Bonde, J.; Kamra, T.; Bülow, L.; Leo, J. C.; Linke, D.; Ye, L., Bacterial imprinting at Pickering emulsion interfaces. Angewandte Chemie 2014, 126 (40), 10863-10866. 10.1002/ange.201406049Search in Google Scholar

[62] Ge, J.; Yin, Y., Responsive photonic crystals. Angewandte Chemie International Edition 2011, 50 (7), 1492-1522. 10.1002/anie.200907091Search in Google Scholar PubMed

[63] Wang, H.; Zhang, K.-Q., Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 2013, 13 (4), 4192-4213. 10.3390/s130404192Search in Google Scholar PubMed PubMed Central

[64] Fenzl, C.; Hirsch, T.; Wolfbeis, O. S., Photonic crystals for chemical sensing and biosensing. Angewandte Chemie International Edition 2014, 53 (13), 3318-3335. 10.1002/anie.201307828Search in Google Scholar PubMed

[65] Lee, K.; Asher, S. A., Photonic crystal chemical sensors: pH and ionic strength. Journal of the American Chemical Society 2000, 122 (39), 9534-9537. 10.1021/ja002017nSearch in Google Scholar

[66] Alexeev, V. L.; Sharma, A. C.; Goponenko, A. V.; Das, S.; Lednev, I. K.; Wilcox, C. S.; Finegold, D. N.; Asher, S. A., High ionic strength glucose-sensing photonic crystal. Analytical chemistry 2003, 75 (10), 2316-2323. 10.1021/ac030021mSearch in Google Scholar PubMed

[67] Sharma, A. C.; Jana, T.; Kesavamoorthy, R.; Shi, L.; Virji, M. A.; Finegold, D. N.; Asher, S. A., A general photonic crystal sensing motif: creatinine in bodily fluids. Journal of the American Chemical Society 2004, 126 (9), 2971-2977. 10.1021/ja038187sSearch in Google Scholar PubMed

[68] Reese, C. E.; Asher, S. A., Photonic crystal optrode sensor for detection of Pb2+ in high ionic strength environments. Analytical chemistry 2003, 75 (15), 3915-3918. 10.1021/ac034276bSearch in Google Scholar PubMed

[69] Weissman, J. M.; Sunkara, H. B.; Albert, S. T.; Asher, S. A., Thermally switchable periodicities and diffraction from mesoscopically ordered materials. Science 1996, 274 (5289), 959-963. Search in Google Scholar

[70] Huang, J.; Tao, C.-a.; An, Q.; Zhang, W.; Wu, Y.; Li, X.; Shen, D.; Li, G., 3D-ordered macroporous poly (ionic liquid) films as multifunctional materials. Chemical Communications 2010, 46 (6), 967-969. 10.1039/B921280ASearch in Google Scholar

[71] Ge, J.; Hu, Y.; Yin, Y., Highly tunable superparamagnetic colloidal photonic crystals. Angewandte Chemie 2007, 119 (39), 7572-7575. 10.1002/ange.200701992Search in Google Scholar

[72] Alexeev, V. L.; Das, S.; Finegold, D. N.; Asher, S. A., Photonic crystal glucose-sensing material for noninvasive monitoring of glucose in tear fluid. Clinical Chemistry 2004, 50 (12), 2353-2360. 10.1373/clinchem.2004.039701Search in Google Scholar PubMed

[73] Hu, X.; Huang, J.; Zhang, W.; Li, M.; Tao, C.; Li, G., Photonic Ionic Liquids Polymer for Naked‐Eye Detection of Anions. Advanced Materials 2008, 20 (21), 4074-4078. 10.1002/adma.200800808Search in Google Scholar

[74] Plesa, C.; Ruitenberg, J. W.; Witteveen, M. J.; Dekker, C., Detection of individual proteins bound along DNA using solid state nanopores. Nano letters 2015, 15 (5), 3153-3158. 10.1021/acs.nanolett.5b00249Search in Google Scholar PubMed

[75] Zheng, D.; Zou, R.; Lou, X., Label-free fluorescent detection of ions, proteins, and small molecules using structure-switching aptamers, SYBR gold, and exonuclease I. Analytical chemistry 2012, 84 (8), 3554-3560. 10.1021/ac300690rSearch in Google Scholar PubMed

[76] Quack, M., Structure and dynamics of chiral molecules. Angewandte Chemie International Edition in English 1989, 28 (5), 571-586. 10.1002/anie.198905711Search in Google Scholar

[77] Wolf, C.; Bentley, K. W., Chirality sensing using stereodynamic probes with distinct electronic circular dichroism output. Chemical Society Reviews 2013, 42 (12), 5408-5424. 10.1039/c3cs35498aSearch in Google Scholar PubMed

[78] Ishikawa, K.; Tanaka, M.; Suzuki, T.; Sekine, A.; Kawasaki, T.; Soai, K.; Shiro, M.; Lahav, M.; Asahi, T., Absolute chirality of the γ-polymorph of glycine: correlation of the absolute structure with the optical rotation. Chemical Communications 2012, 48 (48), 6031-6033. 10.1039/c2cc30549fSearch in Google Scholar PubMed

[79] Yamamoto, S.; Bouř, P., Detection of molecular chirality by induced resonance Raman optical activity in Europium complexes. Angewandte Chemie 2012, 124 (44), 11220-11223. 10.1002/ange.201204765Search in Google Scholar

Received: 2015-12-8
Accepted: 2016-1-29
Published Online: 2016-3-16

© 2016 Wei Chen et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 27.2.2024 from https://www.degruyter.com/document/doi/10.1515/molim-2016-0001/html
Scroll to top button