Abstract
In this paper, by means of upper and lower solutions, we develop monotone iterative method for the existence of extremal solutions for coupled system of nonlinear fractional integro-differential equations with advanced arguments. We illustrate this technique with the help of an example.
This work was partially funded by project MTM2010-16499 from Goverment of Spain.
Acknowledgement
The authors would like to thank the referee for giving useful suggestions and comments for the improvement of this paper.
References
[1] Discontinuous and Fractional Dynamical Systems, ASME J. Comput. Nonlinear Dynam, Special Issue 3 (2008). (J. A. Tenreiro Machado, A. Luo, guest eds.)10.1115/1.2834905Search in Google Scholar
[2] Jankowski, T.: Initial value for neutral fractional differential equations involving a Riemann-Liouville derivative, Appl. Math. Comput. 219 (2013), 7772==7776.10.1016/j.amc.2013.02.001Search in Google Scholar
[3] Mathematical Methods in Engineering, J. Vib. Control, Special Issue 13 (2007), 1207–1516. (K. Tas, J. A. Tenreiro Machado, D. Baleanu, guest eds.)10.1177/1077546307077413Search in Google Scholar
[4] Kilbas, A. A.—Srivastava, H. M.—Trujillo, J. J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, vol. 204, Elsevier Science B.V., Amsterdam, 2006.Search in Google Scholar
[5] Ladde, G.S.—Lakshmikantham, V.—Vatsala, A.S.: Monotone Iterative Techniques for Nonlinear Differential Equations, Pitman, Boston, 1985.Search in Google Scholar
[6] Liu, S.—Wang, G.—Zhang, L.: Existence results for coupled system of nonlinear neutral fractional differential equations, Appl. Math. Lett. 26 (2013), 1120–1124.10.1016/j.aml.2013.06.003Search in Google Scholar
[7] Liu, Z.—Sun, J.—Szanto, I.: Monotone iterative technique for Riemann-Liouville fractional integro-differential equations with advanced arguments, Results Math. 63 (2013), 1277–1287.10.1007/s00025-012-0268-4Search in Google Scholar
[8] Mainardi, F.: Fractional calculus: Some Basic Problems in Continuum and Statistical Mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics (A. Carpinteri, F. Mainardi, eds.), Springer Verlag, Wien, 1997, pp. 223–276.10.1007/978-3-7091-2664-6_5Search in Google Scholar
[9] Mcrae, F. A.: Monotone iterative technique and existence results for fractional differential equations, Nonlinear Anal. 71 (2009), 6093–6096.10.1016/j.na.2009.05.074Search in Google Scholar
[10] Miller, K. S.—Ross, B.: An Introduction to the Fractional Calculus and Differential Equations, Wiley, New York, 1993.Search in Google Scholar
[11] Monje, C. A.—Chen, Y.—Vinagre, B. M.—Xue, D.—Feliu, V.: Fractional-Order Systems and Controls: Fundamentals and Applications, Springer, New York, NY, USA, 2010.10.1007/978-1-84996-335-0Search in Google Scholar
[12] Oustaloup, A.—Sabatier, J.—Lanusse, P.—Malti, R.—Melchior, P.— Moze, M.: An overview of the CRONE approach in system analysis, modeling and identification, observation and control. In: Proceedings of the 17th World Congress, IFAC 08, Soul, Korea, 2008, pp. 14254–14265.Search in Google Scholar
[13] Petras, I.: Fractional-Order Nonlinear Systems: Modelling, Analysis and Simulation, Springer, Dordrecht, The Netherlands, 2011.10.1007/978-3-642-18101-6Search in Google Scholar
[14] Podlubny, I.: Fractional Differential Equations, Academic Press, San Diego, CA, 1999.Search in Google Scholar
[15] Ramirez, J.D.—Vatsala, A.S.: Monotone iterative technique for fractional differential equations with periodic boundary conditions, Opuscula Math. 29 (2009), 289–304.10.7494/OpMath.2009.29.3.289Search in Google Scholar
[16] Royden,H. L.: Real Analysis, 3rd ed. Macmillan Publishing, New York, Collier Macmillan Publishing, London, 1988.Search in Google Scholar
[17] Saeedi, H.—Moghadam, M. M.: Numerical solution of nonlinear Volterra integro-differential equations of arbitrary order by CAS wavelets, Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1216–1226.10.1016/j.cnsns.2010.07.017Search in Google Scholar
[18] Tarasov, V. E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media, Springer, Beijing, Heidelberg (2011).Search in Google Scholar
[19] Tenreiro Machado, J.—Kiryakova, V.—Mainardi, F.: A poster about the recent history of fractional calculus, Fract. Calc. Appl. Anal. 13 (2010), 329–334.Search in Google Scholar
[20] Tenreiro Machado, J. A.— Galhano, A. M.—Trujillo, J. J., Science metrics on fractional calculus development since 1966, Fract. Calc. Appl. Anal. 16 (2013), 479–500.10.2478/s13540-013-0030-ySearch in Google Scholar
[21] Uchaikin, V. V.: Fractional Derivatives for Physicists and Engineers. Series: Nonlinear Physical Science, vol. I, II, Springer jointly published with Higher Education Press, 2013.Search in Google Scholar
[22] Wang, G.: Monotone iterative technique for boundary value problems of a nonlinear fractional differential equations with deviating arguments, J. Comput. Appl. Math. 236 (2012), 2425–2430.10.1016/j.cam.2011.12.001Search in Google Scholar
[23] Wang, G.—Agarwal, R.P. — Cabada, A.: Existence results and the monotone iterative technique for systems of nonlinear fractional differential equations, Appl. Math. Lett. 25 (2012), 1019–1024.10.1016/j.aml.2011.09.078Search in Google Scholar
[24] Wang,G.—Baleanu, D.—Zhang,L.: Monotone iterative method for a class of nonlinear fractional differential equations, Fract. Calc. Appl. Anal. 15 (2012), 244–252.10.2478/s13540-012-0018-zSearch in Google Scholar
[25] Wei, Z.—Li, G.—Che,J.: Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl. 367 (2010), 260–272.10.1016/j.jmaa.2010.01.023Search in Google Scholar
[26] Zhang, S.: Monotone iterative method for initial value problem involving Riemann-Liouville fractional derivatives,, Nonlinear Anal. 71 (2009), 2087–2093.10.1016/j.na.2009.01.043Search in Google Scholar
© 2017 Mathematical Institute Slovak Academy of Sciences