Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 5, 2017

The first law of cubology for the Rubik’s Revenge

  • Stefano Bonzio EMAIL logo , Andrea Loi and Luisa Peruzzi
From the journal Mathematica Slovaca

Abstract

We state and prove the first law of cubology of the Rubik’s Revenge and provide necessary and sufficient conditions for a randomly assembled Rubik’s Revenge to be solvable.


The second author was supported by Prin 2010/11 – Varietà reali e complesse: geometria, topologia e analisi armonica – Italy and also by INdAM. GNSAGA-Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni.



(Communicated by Anatolij Dvurečenskij)


References

[1] Adams, J.: How to Solve Rubik’s Revenge, The Dial Press, New York, 1982.Search in Google Scholar

[2] Bandelow, C. L.: Inside Rubik’s Cube and Beyond. Birkhäuser, 1982.10.1007/978-1-4684-7779-5Search in Google Scholar

[3] Bonzio, S.—Loi, A.—Peruzzi, L.: On the nxnxn Rubik’s Cube, submitted.Search in Google Scholar

[4] Chen, J.: Group theory and the Rubik’s Cube, Notes.Search in Google Scholar

[5] Czech, B.—Larjo, K.—Rozali, M.: Black holes as Rubik’s Cubes, Journal of High Energy Physics 8, (2011).10.1007/JHEP08(2011)143Search in Google Scholar

[6] Demaine, E. D.—Demaine, M. L.—Eisenstat, S.—Lubiw, A.—Winslow, A.: Algorithms for Solving Rubik’s Cubes. In: Proceedings ESA 2011.10.1007/978-3-642-23719-5_58Search in Google Scholar

[7] Diaconu, A.—Loukhaoukha, K.: An improved secure image encryption algorithm based on Rubik’s Cube principle and digital chaotic cipher, Math. Probl. Eng. 2013 (2013), Art. ID 848392.10.1155/2013/848392Search in Google Scholar

[8] Frey, A.—Singmaster, D.: Handbook of Cubik Math, Enslow Publishers, 1982.Search in Google Scholar

[9] Joyner, D.: Adventures in Group Theory, The Johns Hopkins University Press, 2008.10.56021/9780801890123Search in Google Scholar

[10] Kosniowski, C.: Conquer that Cube. Cambridge University Press, 1981.Search in Google Scholar

[11] Kunkle, D.—Cooperman, G.: Twenty-six Moves Suffice for Rubik’s Cube. In: Proceedings of the 2007 International Symposium on Symbolic and Algebraic Computation, 2007.Search in Google Scholar

[12] Larsen, M. E.: Rubik’s Revenge: The group theoretical solution, Amer. Math. Monthly 92, (1985).Search in Google Scholar

[13] Lee, C.-L.—Huang, M.-C.: The Rubik’s Cube problem revisited: a statistical thermodynamic approach, Eur. Phys. J. B 64(2) (2008).10.1140/epjb/e2008-00301-0Search in Google Scholar

[14] Michael, B. C. S.—Jones, A.—Weaverdyck, M. E.: On God’s number(s) for Rubik’s slide, College Math. J. 45(4) (2014).10.4169/college.math.j.45.4.267Search in Google Scholar

[15] Miller, J.: Move-count Means with Cancellation and Word Selection Problems in Rubik’s Cube Solution Approaches, PhD Thesis, Kent State University, 2012.Search in Google Scholar

[16] Rokicki, T.: Towards God’s number for Rubik’s cube in the quarter-turn metric, College Math. J. 45(4) (2014).10.4169/college.math.j.45.4.242Search in Google Scholar

[17] Rokicki, T.—Kociemba, H.—Davidson, M.—Dethridge, J.: The diameter of the Rubik’s Cube group is twenty, SIAM J. Discrete Math. 27(2) (2013).10.1137/120867366Search in Google Scholar

[18] Volte, E.—Patarin, J.—Nachef, V.: Zero Knowledge with Rubik’s Cubes and Non-abelian Groups. Cryptology and Network Security, 12th International Conference, 2013.10.1007/978-3-319-02937-5_5Search in Google Scholar

Received: 2015-4-28
Accepted: 2015-5-29
Published Online: 2017-6-5
Published in Print: 2017-6-27

© 2017 Mathematical Institute Slovak Academy of Sciences

Downloaded on 4.2.2023 from https://www.degruyter.com/document/doi/10.1515/ms-2016-0290/html
Scroll Up Arrow