Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter September 27, 2020

Solutions of a generalized markoff equation in Fibonacci numbers

  • Hayder Raheem Hashim EMAIL logo and Szabolcs Tengely
From the journal Mathematica Slovaca


In this paper, we find all the solutions (X, Y, Z) = (FI, FJ, FK), where FI, FJ, and FK represent nonzero Fibonacci numbers, satisfying a generalization of Markoff equation called the Jin-Schmidt equation: AX2 + BY2 + CZ2 = DXYZ + 1.

The authors would like to express their sincere gratitude to the referee for the careful reading of the manuscript and many useful comments, which improve the quality of the paper. This work was partially supported by the European Union and the European Social Fund through project EFOP-3.6.1-16-2016-00022 (Sz.T.). The research was supported in part by grants ANN130909, K115479 and K128088 (Sz.T.) of the Hungarian National Foundation for Scientific Research. The work of H. R. Hashim was supported by the Stipendium Hungaricum Scholarship.

  1. (Communicated by Milan Paštéka)


[1] Alekseyev, M. A.—Tengely, Sz.: On integral points on biquadratic curves and near-multiples of squares in Lucas sequences, J. Integer Seq. 17(6) (2014), Art. ID 14.6.6.Search in Google Scholar

[2] Baer, C.—Rosenberger, G.: The equation (ax2 + by2 + cz2 = dxyz) over quadratic imaginary fields, Results Math. 33(1–2) (1998), 30–39.10.1007/BF03322067Search in Google Scholar

[3] Baragar, A.—Umeda, K.: The asymptotic growth of integer solutions to the Rosenberger equations, Bull. Aust. Math. Soc. 69(3) (2004), 481–497.10.1017/S0004972700036261Search in Google Scholar

[4] Bosma, W.—Cannon, J.—Playoust, C.: The Magma algebra system. I. The user language, J. Symbolic Comput. 24(3–4) (1997), 235–265.10.1006/jsco.1996.0125Search in Google Scholar

[5] González-Jiménez, E.: Markoff-Rosenberger triples in geometric progression, Acta Math. Hung. 142(1) (2014), 231–243.10.1007/s10474-013-0351-7Search in Google Scholar

[6] Hoare, G. T. Q.: 102.37 Markov numbers, The Mathematical Gazette 102(555) (2018), 494–496.10.1017/mag.2018.117Search in Google Scholar

[7] Hu, S.—Li, Y.: The number of solutions of generalized Markoff-Hurwitz-type equations over finite fields, J. Zhejiang Univ., Sci. Ed. 44(5) (2017), 516–519, 537.Search in Google Scholar

[8] Hurwitz, A.: Über eine Aufgabe der unbestimmten Analyse, Arch. der Math. u. Phys. 11(3) (1907), 185–196.Search in Google Scholar

[9] Jin, Y.—Schmidt, A. L.: A Diophantine equation appearing in Diophantine approximation, Indag. Math., New Ser. 12(4) (2001), 477–482.10.1016/S0019-3577(01)80036-7Search in Google Scholar

[10] Luca, F.—Srinivasan, A.: Markov equation with Fibonacci components, Fibonacci Quart. 56(2) (2018), 126–129.Search in Google Scholar

[11] Markoff, A. A.: Sur les formes quadratiques binaires indéfinies, Math. Ann. 15 (1879), 381–407.10.1007/BF02086269Search in Google Scholar

[12] Markoff, A. A.: Sur les formes quadratiques binaires indéfinies, Math. Ann. 17 (1880), 379–400.10.1007/BF02086269Search in Google Scholar

[13] Mordell, L. J.: On the integer solutions of the equation (x2 + y2 + z2 + 2xyz = n), J. Lond. Math. Soc. 28 (1953), 500–510.10.1112/jlms/s1-28.4.500Search in Google Scholar

[14] Rosenberger, G.: Über die Diophantische Gleichung (ax2 + by2 + cz2 = dxyz), J. Reine Angew. Math. 305 (1979), 122–125.Search in Google Scholar

[15] Sloane, N. J. A.—Conway, J. H.: The On-Line Encyclopedia of Integer Sequences, in Google Scholar

[16] Stein, W. A. et al.: Sage Mathematics Software (Version 9.0), The Sage Development Team (2020), in Google Scholar

Received: 2019-10-19
Accepted: 2020-02-05
Published Online: 2020-09-27
Published in Print: 2020-10-27

© 2020 Mathematical Institute Slovak Academy of Sciences

Downloaded on 2.12.2023 from
Scroll to top button