Abstract
In this work, NiSiCrFeB, WC-Co/NiSiCrFeB, WC-Co, and WC-Cr3C2-Ni coatings were sprayed on rice harvesting blade surfaces using a high velocity oxygen fuel (HVOF) process. Each of the rice harvesting blades was sprayed with one of four coating materials using different spraying durations. The effects of coating materials and spraying durations on the average values of coated blade volume loss, hardness and surface roughness (Ra) were studied through real rice-harvesting field tests. Analysis of variance (ANOVA) and a multiple comparison approach with Tukey’s test were used in order to conduct a comparative performance analysis of the coating materials of rice harvesting blades. The experimental results indicated that the NiSiCrFeB coating exhibited the highest volume loss compared with all others. In addition, the WC-Co-coated blade had significantly greater hardness than those coated with NiSiCrFeB, WC-Co/NiSiCrFeB, or WC-Cr3C2-Ni. The rice harvesting blade coated with either WC-Co/NiSiCrFeB, WC-Co, or WC-Cr3C2-Ni using the shortest spraying duration was recommended for installation in rice harvesting machines.
About the authors
Ronnrit Khuengpukheiw, born in 1990, is currently a PhD student in Industrial Engineering at Khon Kaen University, Thailand. He received his BEng degree in Technology from Kalasin University and a M.Eng. degree in Industrial Engineering from Khon Kaen University. His research interests include materials processing technology and manufacturing processes, focusing on coating technology.
Charnnarong Saikaew, born in 1969, is currently an associate professor in Industrial Engineering at Khon Kaen University, Thailand. He received a Ph.D. degree in Industrial Engineering from the University of Oklahoma, U. S. A., his M.S. degree from Vanderbilt University, U. S. A. and his B.Eng. degree from Khon Kaen University, Thailand. Dr. Saikaew’s primary teaching responsibilities include statistics and design of engineering experiments, and quality engineering. His research interests are product and process quality improvement in materials processing technology and manufacturing processes.
Anurat Wisitsoraat, born in 1972, received his PhD and MSc degrees from Vanderbilt University, TN, U. S. A., and B.Eng. Degree in Electrical Engineering from Chulalongkorn University, Bangkok, Thailand in 2002, 1997, and 1993, respectively. He is currently a researcher at National Electronics and Computer Technology Center in Thailand. His research interests include microelectronic fabrication, semiconductor devices, electronic and optical thin film coating, gas sensors, and micro-electromechanical systems (MEMS).
Acknowledgement
The authors gratefully acknowledge the Faculty of Engineering at Khon Kaen University, Thailand, for their financial supports.
References
1 S. Karoonboonyanan, V. M. Salokhe, P. Niranatlumpong: Wear resistance of thermally sprayed rotary tiller blades, Wear 263 (2007), No. 1-6, pp. 604-608 DOI:10.1016/j.wear.2006.12.07210.1016/j.wear.2006.12.072Search in Google Scholar
2 J. Schlobohm, O. Bruchwald, W. Frackowiak et al.: Turbine blade wear and damage – An overview of advanced characterization techniques, Materials Testing 58 (2016), No. 5, pp. 389-394 DOI:10.3139/120.11087210.3139/120.110872Search in Google Scholar
3 A. S. Kang, G. S. Cheema, S. Singla: Wear behavior of hardfacings on rotary tiller blades, Procedia Engineering 97 (2014), pp. 1442-1451 DOI:10.1016/j.proeng.2014.12.42610.1016/j.proeng.2014.12.426Search in Google Scholar
4 P. Niranatlumpong, C. Sukhonket, J. Nakngoenthong: Wear resistant surface treatment of pulverizer blades, Wear 302 (2013), No. 1-2, pp. 878-881 DOI:10.1016/j.wear.2012.11.07810.1016/j.wear.2012.11.078Search in Google Scholar
5 A. C. Lima, V. A. Ferraresi, R. P. Reis: Performance analysis of weld hardfacings used in the sugar/alcohol industry, Journal of Materials and Engineering Performance 23 (2014), No. 5, pp. 1823-1833 DOI:10.1007/s11665-014-0948-110.1007/s11665-014-0948-1Search in Google Scholar
6 K. O. Cooke: Tribological performance of hard-faced/thermally sprayed coatings for increased wear resistance of cutting blades used in harvesting sugarcane, Annals of Agricultural & Crop Sciences 4 (2019), No. 1, pp. 1-7Search in Google Scholar
7 R. S. C. Paredes, W. Nikkel, G. B. Sucharski, P. P. B. Costa: Optimization of arc-sprayed iron-based tungsten carbide hard coatings on harvester blades, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (2019), No. 5, pp. 1-9 DOI:10.1007/s40430-019-1719-610.1007/s40430-019-1719-6Search in Google Scholar
8 A. S. Marques, L. D. L. de Costa, G. R. dos Santos, A. da Silva Rocha: Wear study of hot forging punches coated with WC-CoCr and Cr3C2-NiCr through high-velocity oxygen fuel (HVOF) process, International Journal of Advanced Manufacturing Technolology 100 (2019), No. 1, pp. 3-11 DOI:10.1007/s00170-018-2693-310.1007/s00170-018-2693-3Search in Google Scholar
9 G. J. Gibbons, R. G. Hansell: Thermal-sprayed coatings on aluminium for mould tool protection and upgrade, Journal of Material Processing Technology 204 (2008), No. 1, pp. 184-191 DOI:10.1016/j.jmatprotec.2007.11.03210.1016/j.jmatprotec.2007.11.032Search in Google Scholar
10 G. Bolelli, L. Lusvarghi, M. Barletta: HVOF-sprayed WC-CoCr coatings on Al alloy: Effect of the coating thickness on the tribological properties, Wear 267 (2009), No. 5, pp. 944-953 DOI:10.1016/j.wear.2008.12.06610.1016/j.wear.2008.12.066Search in Google Scholar
11 Y. Liu, J. Cheng, B. Yin, S. Zhu, Z. Qiao, J. Yang: Study of the tribological behaviors and wear mechanisms of WC-Co and WC-Fe3 Al hard materials under dry sliding condition, Tribiology International 109 (2017), pp. 19-25 DOI:10.1016/j.triboint.2016.12.02310.1016/j.triboint.2016.12.023Search in Google Scholar
12 Z. Wen, B. Zhao, D. Kong: Friction-wear characteristics of high velocity oxygen fuel sprayed NiCrBSi alloy coating at elevated temperatures, Transaction of the Indian Institute of Metals 71 (2018), No. 10, pp. 2565-2573 DOI:10.1007/s12666-018-1386-910.1007/s12666-018-1386-9Search in Google Scholar
13 S. Hui, S. Tianyuan, K. Dejun: Surface and cross-section characteristics and friction–wear properties of high velocity oxy fuel sprayed WC-12Co coating, International Journal of Applied Ceramic Technology 15 (2018), No. 5, pp. 1229-1239 DOI:10.1111/ijac.1288410.1111/ijac.12884Search in Google Scholar
14 C. R. C. Lima J. M. Guilemany: Adhesion improvements of thermal barrier coatings with HVOF thermally sprayed bond coats, Surface and Coatings Technology 201 (2007), No. 8, pp. 4694-4701 DOI:10.1016/j.surfcoat.2006.10.00510.1016/j.surfcoat.2006.10.005Search in Google Scholar
15 X. Chen, C. Li, X. Bai, H. Wang, S. Xu, S. Song: Microstructure, mechanical properties, abrasive wear, and corrosion behavior in molten zinc of boride-based coatings in situ synthesized by an HVOF spraying process, Coatings 9 (2019), No. 9, pp. 1-20 DOI:10.3390/coatings910066510.3390/coatings9100665Search in Google Scholar
16 N. Jegadeeswaran, M. R. Ramesh, S Prakrathi, K. U. Bhat: Hot corrosion behaviour of HVOF spray stellite-6 coatings on gas turbine alloys, Transaction of the Indian Institute of Metals 67 (2014), No. 1, pp. 87-93 DOI:10.1007/s12666-013-0317-z10.1007/s12666-013-0317-zSearch in Google Scholar
17 S. M. Muthu: Investigations of hot corrosion resistance of HVOF coated Fe based superalloy A-286 in simulated gas turbine environment, Engineering Failure Analysis 107 (2020), 104224, pp. 1-15 DOI:10.1016/j.engfailanal.2019.10422410.1016/j.engfailanal.2019.104224Search in Google Scholar
18 M. N. Khan, S. Shah, T. Shamim: Investigation of operating parameters on high-velocity oxyfuel thermal spray coating quality for aerospace applications, International Journal of Advanced Manufacturing Technology 103 (2019), pp. 2677-2690 DOI:10.1007/s00170-019-03696-010.1007/s00170-019-03696-0Search in Google Scholar
19 T. Gong, P. Yao, X. Zuo et al.: Influence of WC carbide particle size on the microstructure and abrasive wear behavior of WC-10Co-4Cr coatings for aircraft landing gear, Wear 362-363 (2016), pp. 135-145 DOI:10.1016/j.wear.2016.05.02210.1016/j.wear.2016.05.022Search in Google Scholar
20 A. Agüero, F. Camon, J. Garcia de Blas et al.: HVOF-deposited WCCoCr as replacement for hard Cr in landing gear actuators, Journal of Thermal Spray Technology, 20 (2011), No. 6, pp. 1292-1309 DOI:10.1007/s11666-011-9686-110.1007/s11666-011-9686-1Search in Google Scholar
21 M. R. Ramesh, S. Prakash, S. K. Nath, P. K. Sapra, B. Venkataraman: Solid particle erosion of HVOF sprayed WC-Co/NiCrFeSiB coatings, Wear 269 (2010), No. 3, pp. 197-205 DOI:10.1016/j.wear.2010.03.01910.1016/j.wear.2010.03.019Search in Google Scholar
22 T. S. Sidhu, S. Prakash, R. D. Agrawal: Studies of the metallurgical and mechanical properties of high velocity oxy-fuel sprayed stellite-6 coatings on Ni- and Fe-based superalloys, Surface and Coatings Technology 201 (2006), No. 1, pp. 273-281 DOI:10.1016/j.surfcoat.2005.11.10810.1016/j.surfcoat.2005.11.108Search in Google Scholar
23 S. Nourouzi, M. J. Azizpour, H. R. Salimijazi: Parametric study of residual stresses in HVOF thermally sprayed WC-12Co coatings, Materials and Manufacturing Processes 29 (2014), No. 9, pp. 1117-1125 DOI:10.1080/10426914.2014.92169610.1080/10426914.2014.921696Search in Google Scholar
24 S. Fayyazi, M. Kasraei, M. E. Bahrololoom: Improving impact resistance of high-velocity oxygen fuel-sprayed WC-17Co coating using Taguchi experimental design, Journal of Thermal Spray Technology 28 (2019), No. 4, pp. 706-716 DOI:10.1007/s11666-019-00844-610.1007/s11666-019-00844-6Search in Google Scholar
25 S. Hasan, J. Stokes: Design of experiment analysis of the Sulzer Metco DJ high velocity oxy-fuel coating of hydroxyapatite for orthopedic applications, Journal of Thermal Spray Technology 20 (2011), No. 1-2, pp. 186-194 DOI:10.1007/s11666-010-9566-010.1007/s11666-010-9566-0Search in Google Scholar
26 H. Ruiz-Luna, D. Lozano-Manujana, J. M. Alvarado-Orozco et al.: Effect of HVOF processing parameters on the properties of NiCoCrAlY coatings by design of experiments, Journal of Thermal Spray Technology 23 (2014), No. 6, pp. 950-961 DOI:10.1007/s11666-014-0121-210.1007/s11666-014-0121-2Search in Google Scholar
27 S. Fayyazi, M. E. Bahrololoom, M. Kasraei: Optimizing high-velocity oxygen fuel-sprayed WC-17Co coating using Taguchi experimental design to improve tribological properties, Transaction of the Indian Institute of Metals 71 (2018), No. 12, pp. 3045-3062 DOI:10.1007/s12666-018-1406-910.1007/s12666-018-1406-9Search in Google Scholar
28 A. S. Praveen, J. Sarangan, S. Suresh, B. H. Channabasappa: Optimization and erosion wear response of NiCrSiB/WC-Co HVOF coating using Taguchi method, Ceramic International 42 (2016), No. 1, pp. 1094-1104 DOI:10.1016/j.ceramint.2015.09.03610.1016/j.ceramint.2015.09.036Search in Google Scholar
29 S. Thirumalvalavan, N. Senthilkumar: Experimental investigation and optimization of HVOF spray parameters on wear resistance behaviour of Ti‑6Al‑4 V alloy, Engineering Science and Mechanical 72 (2019), No. 5, pp. 664-673 DOI:10.7546/CRABS.2019.05.1510.7546/CRABS.2019.05.15Search in Google Scholar
30 G. B. Sucharski, A. G. M. Pukasiewicz, R. F. Váz, R. S. C. Paredes: Optimization of the deposition parameters of HVOF FeMnCrSi+Ni+B thermally sprayed coatings, Soldagem & Inspecao 20 (2015), No. 2, pp. 238-252 DOI:10.1590/0104-9224/SI2002.1110.1590/0104-9224/SI2002.11Search in Google Scholar
31 A. Al-bashir, A. K. A. Jawwad, K. Abu: Evaluating the effects of high velocity oxy-fuel (HVOF) process parameters on wear resistance of steel-shaft materials, Jordan Journal of Mechanical and Industrial Engineering 3 (2009), No. 2, pp. 157-160Search in Google Scholar
32 K. Murugan, A. Ragupathy, V. Balasubramanian, K. Sridhar: Optimizing HVOF spray process parameters to attain minimum porosity and maximum hardness in WC-10Co-4Cr coatings, Surface and Coatings Technology 247 (2014), pp. 90-102 DOI:10.1016/j.surfcoat.2014.03.02210.1016/j.surfcoat.2014.03.022Search in Google Scholar
33 P. C. Du, X. P. Zhu, Y. Meng, H. Feng, Q. F. Wang, M. K. Lei: Water-lubricated tribological behavior of WC-Ni coatings deposited by off-angle HVOF spraying, Surface and Coatings Technology 309 (2016), pp. 663-670 DOI:10.1016/j.surfcoat.2016.11.02610.1016/j.surfcoat.2016.11.026Search in Google Scholar
34 T. Sahraoui, S. Guessasma, M. A. Jeridane, M. Hadji: HVOF sprayed WC-Co coatings: microstructure, mechanical properties and friction moment prediction, Materials and Design 31 (2010), No. 3, pp. 1431-1437 DOI:10.1016/j.matdes.2009.08.03710.1016/j.matdes.2009.08.037Search in Google Scholar
35 D. Kunying: Effect of feedstock size on the properties of WC-17Co coatings, Rare Metal Materials and Engineering 46 (2017), No. 5, pp. 1197-1201 DOI:10.1016/S1875-5372(17)30136-410.1016/S1875-5372(17)30136-4Search in Google Scholar
36 D. Kunying, W. Lijun: Effect of isothermal heat treatment on mechanical properties of WC-17Co coatings, Rare Metal Materials and Engineering 43 (2014), No. 10, pp. 2365-2369 DOI:10.1016/S1875-5372(14)60171-510.1016/S1875-5372(14)60171-5Search in Google Scholar
37 S. Ozel: Microstructure and mechanical properties of HVOF sprayed WC-Co/NiCrBSi, Cr3C2 coatings on Al alloys, Materials Testing 55 (2013), No. 9, pp. 694-700 DOI:10.3139/120.11048910.3139/120.110489Search in Google Scholar
38 L. P. Ward, A. Pilkington: The dry sliding wear behavior of HVOF-sprayed WC: metal composite coatings, Journal of Materials and Engineering Performance 23 (2014), No. 9, pp. 3266-3278 DOI:10.1007/s11665-014-1122-510.1007/s11665-014-1122-5Search in Google Scholar
39 D. K. Goyal, H. Singh, H. Kumar: Characterization and accelerated erosion testing of WC-Co-Cr- and CoNiCrAlY-coated CA6NM turbine steel, Journal of Thermal Spray Technology 28 (2019), No. 7, pp. 1363-1378 DOI:10.1007/s11666-019-00897-710.1007/s11666-019-00897-7Search in Google Scholar
40 V. Bolleddu, V. Racherla, P. P. Bandyopadhyay: Comparative study of air plasma sprayed and high velocity oxy-fuel sprayed nanostructured WC-17wt%Co coatings, International Journal of Advanced Manufacturing Technolology 84 (2016), No. 5, pp. 1601-1613 DOI:10.1007/s00170-015-7824-510.1007/s00170-015-7824-5Search in Google Scholar
41 X. Ding, X. D. Cheng, C. Li, X. Yu, Z. X. Ding, C. Q. Yuan: Microstructure and performance of multi-dimensional WC-CoCr coating sprayed by HVOF, International Journal of Advanced Manufacturing Technolology 96 (2018), No. 5, pp. 1625-1633 DOI:10.1007/s00170-017-0837-510.1007/s00170-017-0837-5Search in Google Scholar
42 Shabana, M. M. M. Sarcar, K. N. S. Suman, S. Kamaluddin: Tribological and corrosion behavior of HVOF sprayed WC-Co, NiCrBSi and Cr3C2-NiCr coatings and analysis using design of experiments, Materials Today Proceedings 2 (2015), No. 4-5, pp. 2654-2665 DOI:10.1016/j.matpr.2015.07.22710.1016/j.matpr.2015.07.227Search in Google Scholar
43 J. M. Miguel, J. M. Guilemany, S. Vizcaino: Tribological study of NiCrBSi coating obtained by different processes, Tribology International 36 (2003), No. 3, pp. 181-187 DOI:10.1016/S0301-679X(02)00144-510.1016/S0301-679X(02)00144-5Search in Google Scholar
44 Š. Houdková, E. Smazalová, O. Bláhová, M. Vostřák: Mechanical properties of HVOF sprayed, flame and laser remelted NiCrBSi coatings, Key Engineering Materials 606 (2014), pp. 179-182 DOI:10.4028/www.scientific.net/KEM.606.179Search in Google Scholar
45 J. Singh, S. Kumar, S. K. Mohapatra: Erosion wear performance of Ni-Cr-O and NiCrBSiFe-WC(Co) composite coatings deposited by HVOF technique, Industrial Lubrication & Tribology 71 (2019), No. 4, pp. 610-619 DOI:10.1108/ILT-04-2018-014910.1108/ILT-04-2018-0149Search in Google Scholar
46 A. C. Karaoglanli, M. Oge, K. M. Doleker, M. Hotamis: Comparison of tribological properties of HVOF sprayed coatings with different composition, Surface and Coatings Technology 318 (2017), pp. 299-308 DOI:10.1016/j.surfcoat.2017.02.02110.1016/j.surfcoat.2017.02.021Search in Google Scholar
47 A. K. Maiti, N. Mukhopadhyay, R. Raman: Improving the wear behavior of WC-CoCr-based HVOF coating by surface grinding, Journal of Materials Engineering and Performance 18 (2009), No. 8, pp. 1060-1066 DOI:10.1007/s11665-009-9354-510.1007/s11665-009-9354-5Search in Google Scholar
48 R. R. Phiri, O. P. Oladijo, N. Maledi, E. T. Akinlabi: Effect of coating thickness on wear performance of inconel 625 coating, IOP Conference Series: Materials Science and Engineering 423 (2018), No. 1 DOI:10.1088/1757-899X/423/1/01215910.1088/1757-899X/423/1/012159Search in Google Scholar
49 D. C. Montgomery, Design and Analysis of Experiments, 8th Edition, John Wiley & Sons, New York, USA (2013), pp. 183-219 DOI:10.1198/tech.2006.s37210.1198/tech.2006.s372Search in Google Scholar
50 A. Milanti, H. Koivuluoto, P. Vuoristo, G. Bolelli, F. Bozza, L. Lusvarghi: Microstructural characteristics and tribological behavior of HVOF-sprayed novel Fe-based alloy coatings, Coatings 4 (2014), No. 1, pp. 98-120 DOI:10.3390/coatings401009810.3390/coatings4010098Search in Google Scholar
51 N. Serres, S. Costil, C. Langlade, F. Machi: Microstructures and mechanical properties of metallic NiCrBSi and composite NiCrBSi – WC layers manufactured via hybrid plasma/ laser process, Applied Surface Science 257 (2011), No. 12, pp. 5132-5137 DOI:10.1016/j.apsusc.2010.11.06210.1016/j.apsusc.2010.11.062Search in Google Scholar
52 R. Ahmed, O. Li, N. H. Faisal et al.: Sliding wear investigation of suspension sprayed WC-Co nanocomposite coatings, Wear 322–323 (2015), pp. 133-150 DOI:10.1016/j.wear.2014.10.02110.1016/j.wear.2014.10.021Search in Google Scholar
53 L. M. Berger, S. Saaro, T. Naumann, M. Kašparova, F. Zahálka: Influence of feedstock powder characteristics and spray processes on micro-structure and properties of WC-(W,Cr)2C-Ni hardmetal coatings, Surface and Coatings Technology 205 (2010), No. 4, pp. 1080-1087 DOI:10.1016/j.surfcoat.2010.07.03210.1016/j.surfcoat.2010.07.032Search in Google Scholar
54 V. Katranidis, S. Gu, B. Allcock, S. Kamnis: Experimental study of high velocity oxy-fuel sprayed WC-17Co coatings applied on complex geometries. Part A: Influence of kinematic spray parameters on thickness, porosity, residual stresses and microhardness, Surface and Coatings Technology 311 (2017), pp. 206-215 DOI:10.1016/j.surfcoat.2017.01.01510.1016/j.surfcoat.2017.01.015Search in Google Scholar
55 M. Ravichandran, S. Saravanan, V. Balasubramaniyan: Investigations on erosion and corrosion behavior of high-velocity oxy-fuel sprayed WC-Cr3C2-Ni coatings on AISI 1018 steel, Journal of Heat Treatment and Materials 71 (2016), No. 4, pp. 163-169 DOI:10.3139/105.11029110.3139/105.110291Search in Google Scholar
56 D. Jeyasimman, R. Narayanasamy, R. Ponalagusamy, V. Anandakrishnan, M. Kamaraj: The effects of various reinforcements on dry sliding wear behaviour of AA 6061 nanocomposites, Materials and Design 64 (2014), pp. 783-793 DOI:10.1016/j.matdes.2014.08.03910.1016/j.matdes.2014.08.039Search in Google Scholar
57 C. Y. H. Lim, S. C. Lim, M. Gupta: Wear behaviour of SiCp-reinforced magnesium matrix composites, Wear 255 (2003), No. 1-6, pp. 629-637 DOI:10.1016/S0043-1648(03)00121-210.1016/S0043-1648(03)00121-2Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany