Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 23, 2021

Changes in the microstructural state of Ti-Al-Nb-based alloys depending on the temperature cycle during spark plasma sintering

Yernat Kozhakhmetov, Mazhyn Skakov, Nuriya Mukhamedova, Sherzod Kurbanbekov, Sherzod Ramankulov and Wojciech Wieleba
From the journal Materials Testing

Abstract

This article presents results of the study on the dependence of the structural-phase state of alloys based on Ti-12.52Al-43.08Nb system (wt.-%) on the temperature of spark plasma sintering. It has been established that spark plasma sintering of Ti-Al-Nb alloys under the temperature of 1500 °C resulted in melting the aluminum component of the mixture that, in turn, negatively affects the quality of ready products. It has also been shown that stepping up the sintering temperature from 1000 °C to 1300 °C leads to increasing volume fraction of O-phase up to 49.63 % due to rapid precipitation of O-phase from B2-phase and Ti3Al-phase. It has been revealed that intermetallic composites obtained under the temperature of 1300 °C are characterized by a dominant two-phase В2+О structure which is more suitable for strengthening sorption properties of hydrogen-storing materials based on Ti-Al-Nb.


Yernat A. Kozhakhmetov D. Serikbayev EKSTU Ust-Kamenogorsk Kazakhstan

Acknowledgement

The work has been implemented within the framework of the scientific and technical program “Development of nuclear energy in the Republic of Kazakhstan for 2018-2020” on the topic of “Study of advanced materials based on Ti-Al-Nb system for hydrogen storage and transportation”.

References

1 Р. Preuster, A. Alekseev, P. Wasserscheid: Hydrogen storage technologies for future energy systems, Annual Review of Chemical and Biomolecular Engineering (2017) No. 8, pp. 445-471 DOI:10.1146/annurev-chembioeng-060816-10133410.1146/annurev-chembioeng-060816-101334Search in Google Scholar

2 E. Eriksson, E. Mac, A. Gray: Optimization and integration of hybrid renewable energy hydrogen fuel cell energy systems – A critical review, Applied Energy (2017) No. 202, pp. 348-364 DOI:10.1016/j.apenergy.2017.03.13210.1016/j.apenergy.2017.03.132Search in Google Scholar

3 K. Tao, H. Arano, P. Zhang, P. Ai, L. Han, N. Tsubaki: Enhanced hydrogen production from steam reforming of vegetable oil over bimodal ZrO2-SiO2 supported Ni catalyst, Chemistry Select 2 (2017), No. 1, pp. 527-532 DOI:10.1002/slct.20160139510.1002/slct.201601395Search in Google Scholar

4 S. Hosseini, M. Wahid: Hydrogen production from renewable and sustainable energy resources: promising green energy carrier for clean development, Renewable and Sustainable Energy Reviews 57 (2016), pp. 850-866 DOI:10.1016/j.rser.2015.12.11210.1016/j.rser.2015.12.112Search in Google Scholar

5 I. Kapdan, F. Kargi: Bio-hydrogen production from waste materials, Enzyme and Microbial Technology 38 (2006), pp. 569-582 DOI:10.1016/j.enzmictec.2005.09.01510.1016/j.enzmictec.2005.09.015Search in Google Scholar

6 R. Varin, T. Czujko, Z. Wronski: Nanomaterials for solid state hydrogen storage, Springer, New York, USA (2009), pp. 321-322 DOI:10.1007/978-0-387-77712-210.1007/978-0-387-77712-2Search in Google Scholar

7 B. Sakintuna, F. Lamari-Darkrim, M. Hirscher: Metal hydride materials for solid hydrogen storage, International Journal of Hydrogen Energy 32 (2007), No. 9, pp. 1121-1140 DOI:10.1016/j.ijhydene.2006.11.02210.1016/j.ijhydene.2006.11.022Search in Google Scholar

8 B. Karakozov, M. Skakov, Sh. Kurbanbekov, V. Baklanov, A. Sitnikov, V. Yakovlev, D. Dudina, V. Maly: Structural and phase transformations in alloys during spark plasma sintering of Ti + 23.5 at % Al + 21 at % Nb powder mixtures, Inorganic Materials 54 (2018), No. 1, pp. 37-41 DOI:10.1134/S002016851801005310.1134/S0020168518010053Search in Google Scholar

9 T. Ma, R. Chen, D. Zheng, J. Guo, H. Ding, Y. Su, H. Fu: Effect of β-phase stabilizing elements and high temperature (1373–1693 K) on hydrogen absorption in TiAl alloys, International Journal of Hydrogen Energy 42 (2016), No. 1, pp. 86-95 DOI:10.1016/j.ijhydene.2016.09.13710.1016/j.ijhydene.2016.09.137Search in Google Scholar

10 H. Niu, Y. Chen, D. Zhang, Y. Zhang, J. Lu, W. Zhang, P. Zhang: Fabrication of a powder metallurgy Ti2AlNb-based alloy by spark plasma sintering and associated microstructure optimization, Materials & Design 89 (2016), pp. 823-829 DOI:10.1016/j.matdes.2015.10.04210.1016/j.matdes.2015.10.042Search in Google Scholar

11 F. Appel, H. Clemens, F. Fischer: Modeling concepts for intermetallic titanium aluminides, Progress in Materials Science 81 (2016), pp. 55-124 DOI:10.1016/j.pmatsci.2016.01.00110.1016/j.pmatsci.2016.01.001Search in Google Scholar

12 Ye. Kozhakhmetov, М. Skakov, W. Wieleba, Sh. Kurbanbekov, N. Mukhamedova: Evolution of intermetallic compounds in Ti-Al-Nb system by the action of mechanoactivation and spark plasma sintering, AIMS Materials Science 7 (2020), No. 2, pp. 182-191 DOI:10.3934/matersci.2020.2.18210.3934/matersci.2020.2.182Search in Google Scholar

13 Sh. Kurbanbekov, М. Skakov, V. Baklanov, B. Karakozov: Effect of spark plasma sintering temperature on structure and phase composition of Ti-Al-Nb based alloys, Materials Testing 59 (2017), No. 11-12, pp. 1033-1036 DOI:10.3139/120.11110710.3139/120.111107Search in Google Scholar

Published Online: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Scroll Up Arrow