Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 23, 2021

Effects of welding parameters on tensile properties and fracture modes of resistance spot welded DP1200 steel

Muhammed Elitas
From the journal Materials Testing


In this study, the maximum tensile shear load bearing capacity and fracture modes of resistance spot welded DP1200 steel were investigated, and the tensile shear properties of the joints were evaluated. The effects of different welding parameters on tensile shear properties, fracture modes, microstructure, microhardness, and heat affected zone softening were examined. Weld processes were performed by using 2 to 6 bar electrode pressure as well as 5 and 7 kA weld currents. The microstructure of resistance spot welded materials was evaluated, and the hardness profiles were determined. Experimental results showed that welding current and electrode pressure had a significant effect on the load-displacement characteristics of DP1200 welds. Three different fracture modes were observed in the tensile shear loads. It was also observed that the expulsion had a negative effect on the tensile shear properties.

Muhammed Elitas Mechanical Engineering Department Engineering Faculty Bilecik Seyh Edebali University 11230 Bilecik, Turkey


This work was supported by the Scientific Research Projects Coordination Unit of Karabuk University (Karabuk, Turkey). Project Number: KBUBAP-17-KP-463.


1 C. C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama: An overview of dual-phase steels: advances in microstructure-oriented processing and micromechanically guided design, Annual Review of Materials Research 45 (2015), pp. 391-431 DOI:10.1146/annurev-matsci-070214-02110310.1146/annurev-matsci-070214-021103Search in Google Scholar

2 M. Pouranvari: Critical assessment 27: dissimilar resistance spot welding of aluminium/steel: challenges and opportunities, Materials Science and Technology 33 (2017), No. 15, pp. 1705-1712 DOI:10.1080/02670836.2017.133431010.1080/02670836.2017.1334310Search in Google Scholar

3 I. Sevim: Newly revealed features of fracture toughness behavior of spot welded dual phase steel sheets for automotive bodies, Materials Testing 57 (2015), No. 11-12, pp. 960-967 DOI:10.3139/120.11079810.3139/120.110798Search in Google Scholar

4 B. K. Zuidema: Bridging the design–manufacturing–materials data gap: material properties for optimum design and manufacturing performance in light vehicle steel-intensive body structures, The Journal of The Minerals, Metals & Materials Society 64 (2012), No. 9, pp. 1039-1047 DOI:10.1007/s11837-012-0405-210.1007/s11837-012-0405-2Search in Google Scholar

5 M. Elitas, B. Demir: Residual stress evaluation during RSW of DP600 sheet steel, Materials Testing 62 (2020), No. 9, pp. 1-3 DOI:10.3139/120.11156010.3139/120.111560Search in Google Scholar

6 M. Pouranvari, S. P. H. Marashi: Critical review of automotive steels spot welding: process, structure and properties, Science and Technology of Welding and Joining 18 (2013), No. 5, pp. 361-403 DOI:10.1179/1362171813Y.000000012010.1179/1362171813Y.0000000120Search in Google Scholar

7 N. J. Den Uijl: Resistance Spot Welding of Advanced High Strength Steels, Doctoral Thesis, Delft University of Technology, Delft, Netherlands (2015) DOI:10.4233/uuid:ef6aa135-0ef3-42d5-b2a7-d270f36529ad10.4233/uuid:ef6aa135-0ef3-42d5-b2a7-d270f36529adSearch in Google Scholar

8 E. Javaheri, A. Pittner, B. Graf, M. Rethmeier: Mechanical properties characterization of resistance spot welded DP1000 steel under uniaxial tensile tests, Materials Testing 61 (2019), No. 6, pp. 527-532 DOI:10.3139/120.11134910.3139/120.111349Search in Google Scholar

9 P. Marashi, M. Pouranvari, S. Amirabdollahian, A. Abedi, M. Goodarzi: Microstructure and failure behavior of dissimilar resistance spot welds between low carbon galvanized and austenitic stainless steels, Materials Science and Engineering A 480 (2008), No. 1-2, pp. 175-180 DOI:10.1016/j.msea.2007.07.00710.1016/j.msea.2007.07.007Search in Google Scholar

10 M. Pouranvari, A. Abedi, P. Marashi, M. Goodarzi: Effect of expulsion on peak load and energy absorption of low carbon steel resistance spot welds, Science and Technology of Welding and Joining 13 (2008), No. 1, pp. 39-43 DOI:10.1179/174329307X24934210.1179/174329307X249342Search in Google Scholar

11 M. Pouranvari, S. P. H. Marashi, D. S. Safanama: Failure mode transition in AHSS resistance spot welds. Part II: Experimental investigation and model validation, Materials Science and Engineering: A 528 (2011), No. 29-30, pp. 8344-8352 DOI:10.1016/j.msea.2011.08.01610.1016/j.msea.2011.08.016Search in Google Scholar

12 E. Aydin, R. Ertan: Shunting effects on the resistance spot welding parameters of DP600, Materials Testing 62 (2020), No. 1, pp. 97-103 DOI:10.3139/120.11145510.3139/120.111455Search in Google Scholar

13 H. Zhang, J. Senkara: Resistance Welding: Fundamentals and Applications, 2nd Ed., CRC press, New York, USA (2011)10.1201/b11752Search in Google Scholar

14 M. Mimer, L. E. Svensson, R. Johansson: Process adjustments to improve fracture behaviour in resistance spot welds of EHSS and UHSS, Welding in the World 48 (2004), No. 3-4, pp. 14-18 DOI:10.1007/BF0326642110.1007/BF03266421Search in Google Scholar

15 M. Bouzekri, S. Dancette, T. Dupuy, A. Lens, B. N. Oultit, V. Massardier, D. FabrÈgue, H. Klocker: An investigation of failure types in high-strength steel resistance spot welds, Welding in the World 54 (2010), No. 3-4, pp. 3-14 DOI:10.1007/BF0326348510.1007/BF03263485Search in Google Scholar

16 X. Sun, E. V. Stephens, M. A. Khaleel: Effects of fusion zone size and failure mode on peak load and energy absorption of advanced high strength steel spot welds under lap shear loading conditions, Engineering Failure Analysis 15 (2008), No. 4, pp. 356-367 DOI:10.1016/j.engfailanal.2007.01.01810.1016/j.engfailanal.2007.01.018Search in Google Scholar

17 accessed July 27, 2020Search in Google Scholar

18 M. Marya, K. Wang, L. G. Hector Jr, X. Gayden: Tensile-shear forces and fracture modes in single and multiple weld specimens in dual-phase steels, Journal of Manufacturing Science and Engineering 128 (2006), No. 1, pp. 287-298 DOI:10.1115/1.213775110.1115/1.2137751Search in Google Scholar

19 M. Pouranvari, S. P. H. Marashi: Failure mode transition in AHSS resistance spot welds. Part I. Controlling factors, Materials Science and Engineering A 528 (2011), No. 29-30, pp. 8337-8343 DOI:10.1016/j.msea.2011.08.01710.1016/j.msea.2011.08.017Search in Google Scholar

20 S. Ao, H. Shan, X. Cui, Z. Luo, Y. J. Chao, M. Ma: Effect of specimen width on the failure behavior in resistance spot weld tensile shear testing, Welding in the World 60 (2016), No. 6, pp. 1095-1107 DOI:10.1007/s40194-016-0384-y10.1007/s40194-016-0384-ySearch in Google Scholar

21 M. Pouranvari, S. Sobhani, F. Goodarzi: Resistance spot welding of MS1200 martensitic advanced high strength steel: microstructure-properties relationship, Journal of Manufacturing Processes 31 (2018), No. 1, pp. 867-874 DOI:10.1016/j.jmapro.2018.01.00910.1016/j.jmapro.2018.01.009Search in Google Scholar

22 H. Lee, N. Kim, T. S. Lee: Overload failure curve and fatigue behavior of spot-welded specimens, Engineering Fracture Mechanics 72 (2005), No. 8, pp. 1203-1221 DOI:10.1016/j.engfracmech.2004.07.01310.1016/j.engfracmech.2004.07.013Search in Google Scholar

23 Z. Han, J. E. Indacochea: Effects of expulsion in spot welding of cold rolled sheet steels, Journal of Materials Engineering and Performance 2 (1993), No. 3, pp. 437-444 DOI:10.1007/BF0264883210.1007/BF02648832Search in Google Scholar

24 M. Goodarzi, S. P. H. Marashi, M. Pouranvari: Dependence of overload performance on weld attributes for resistance spot welded galvanized low carbon steel, Journal of Materials Processing Technology 209 (2009), No. 9, pp. 4379-4384 DOI:10.1016/j.jmatprotec.2008.11.01710.1016/j.jmatprotec.2008.11.017Search in Google Scholar

25 A. Alzahougi, M. Elitas, B. Demir: RSW junctions of advanced automotive sheet steel by using different electrode pressures, Engineering, Technology & Applied Science Research 8 (2018), No. 5, pp. 3492-3495 DOI:10.48084/etasr.234210.48084/etasr.2342Search in Google Scholar

26 S. Fukumoto, K. Fujiwara, S. Toji, A. Yamamoto: Small-scale resistance spot welding of austenitic stainless steels, Materials Science and Engineering A 492 (2008), No. 1-2, pp. 243-249 DOI:10.1016/j.msea.2008.05.00210.1016/j.msea.2008.05.002Search in Google Scholar

27 D. Q. Sun, B. Lang, D. X. Sun, J. B. Li: Microstructures and mechanical properties of resistance spot welded magnesium alloy joints, Materials Science and Engineering A 460 (2007), pp. 494-498 DOI:10.1016/j.msea.2007.01.07310.1016/j.msea.2007.01.073Search in Google Scholar

28 M. Pouranvari, S. P. H. Marashi, S. M. Mousavizadeh: Failure mode transition and mechanical properties of similar and dissimilar resistance spot welds of DP600 and low carbon steels, Science and Technology of Welding and Joining 15 (2010), No. 7, pp. 625-631 DOI:10.1179/136217110X1281339316953410.1179/136217110X12813393169534Search in Google Scholar

29 M. Pouranvari, S. P. H. Marashi, S. M. Mousavizadeh: Dissimilar resistance spot welding of DP600 dual phase and AISI 1008 low carbon steels: correlation between weld microstructure and mechanical properties, Ironmaking & Steelmaking 38 (2011), No. 6, pp. 471-480 DOI:10.1179/1743281211Y.000000002410.1179/1743281211Y.0000000024Search in Google Scholar

30 M. Pouranvari, H. R. Asgari, S. M. Mosavizadch, P. H. Marashi, M. Goodarzi: Effect of weld nugget size on overload failure mode of resistance spot welds, Science and Technology of Welding and Joining 12 (2007), No. 3, pp. 217-225 DOI:10.1179/174329307X16440910.1179/174329307X164409Search in Google Scholar

31 N. J. Den Uijl, H. Nishibata, S. Smith, T. Okada, T. Van Der Veldt, M. Uchihara, K. Fukui: Prediction of post weld hardness of advanced high strength steels for automotive application using a dedicated carbon equivalent number, Welding in the World 52 (2008), No. 11-12, pp. 18-29 DOI:10.1007/BF0326667910.1007/BF03266679Search in Google Scholar

32 M. Elitas, B. Demir: The effects of the welding parameters on tensile properties of RSW junctions of DP1000 sheet steel, Engineering, Technology & Applied Science Research 8 (2018), No. 4, pp. 3116-3120 DOI:10.48084/etasr.211510.48084/etasr.2115Search in Google Scholar

33 B. V. Hernandez, M. L. Kuntz, M. I. Khan, Y. Zhou: Influence of microstructure and weld size on the mechanical behaviour of dissimilar AHSS resistance spot welds, Science and Technology of Welding and Joining 13 (2008), No. 8, pp. 769-776 DOI:10.1179/136217108X32547010.1179/136217108X325470Search in Google Scholar

34 M. I. Khan, M. L. Kuntz, Y. Zhou: Effects of weld microstructure on static and impact performance of resistance spot welded joints in advanced high strength steels, Science and Technology of Welding and Joining 13 (2008), No. 3, pp. 294-304 DOI:10.1179/174329308X27173310.1179/174329308X271733Search in Google Scholar

35 V. B. Hernandez, S. K. Panda, M. L. Kuntz, Y. Zhou: Nanoindentation and microstructure analysis of resistance spot welded dual phase steel, Materials Letters 64 (2010), No. 2, pp. 207-210 DOI:10.1016/j.matlet.2009.10.04010.1016/j.matlet.2009.10.040Search in Google Scholar

36 V. H. B. Hernandez, S. K. Panda, Y. Okita, N. Y. Zhou: A study on heat affected zone softening in resistance spot welded dual phase steel by nanoindentation, Journal of Materials Science 45 (2010), No. 6, pp. 1638-1647 DOI:10.1007/s10853-009-4141-010.1007/s10853-009-4141-0Search in Google Scholar

37 F. Nikoosohbat, S. Kheirandish, M. Goodarzi, M. Pouranvari, S. P. H. Marashi: Microstructure and failure behaviour of resistance spot welded DP980 dual phase steel, Materials Science and Technology 26 (2010), No. 6, pp. 738-744 DOI:10.1179/174328409X41499510.1179/174328409X414995Search in Google Scholar

38 M. Xia, E. Biro, Z. Tian, Y. N. Zhou: Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels, ISIJ International 48 (2008), No. 6, pp. 809-814 DOI:10.2355/isijinternational.48.80910.2355/isijinternational.48.809Search in Google Scholar

39 V. B. Hernandez, S. S. Nayak, Y. Zhou: Tempering of martensite in dual-phase steels and its effects on softening behavior, Metallurgical and Materials Transactions A 42 (2011), No. 10, pp. 3115-3129 DOI:10.1007/s11661-011-0739-310.1007/s11661-011-0739-3Search in Google Scholar

40 S. S. Nayak, V. B. Hernandez, Y. Zhou: Effect of chemistry on nonisothermal tempering and softening of dual-phase steels, Metallurgical and Materials Transactions A 42 (2011), No. 11, pp. 3242-3248 DOI:10.1007/s11661-011-0868-810.1007/s11661-011-0868-8Search in Google Scholar

41 S. Dancette, V. Massardier-Jourdan, D. Fabrègue, J. Merlin, T. Dupuy, M. Bouzekri: HAZ microstructures and local mechanical properties of high strength steels resistance spot welds, ISIJ International 51 (2011), No. 1, pp. 99-107 DOI:10.2355/isijinternational.51.9910.2355/isijinternational.51.99Search in Google Scholar

42 K. Kunishige, N. Yamauchi, T. Taka, N. Nagao: Softening in weld heat affected zone of dual phase steel sheet for automotive wheel rim, SAE Transactions 92 (1983), No. 2, pp. 1063-1067 DOI:10.4271/83063210.4271/830632Search in Google Scholar

43 M. Uchihara, K. Fukui: Tailored blanks of high strength steels-comparison of welding processes, Welding in the World 46 (2002), No. 7-8, pp. 41-48 DOI:10.1007/BF0326338910.1007/BF03263389Search in Google Scholar

44 V. H. Baltazar Hernandez: Effects of Martensite Tempering on HAZ-Softening and Tensile Properties of Resistance Spot Welded Dual-Phase Steels, Doctoral Thesis, University of Waterloo, Waterloo, Canada (2010)Search in Google Scholar

45 F. Hayat, B. Demir, M. Acarer: Tensile shear stress and microstructure of low carbon dual phase Mn-Ni steels after spot resistance welding, Metal Science and Heat Treatment 49 (2007), No. 9-10, pp. 484-489 DOI:10.1007/s110410070090-x10.1007/s110410070090-xSearch in Google Scholar

Published Online: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Scroll Up Arrow