Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 23, 2021

Investigation of wear on the upper edges of webs of thin-film coated single-screw extruders processing pure polymers

Torben Buttler, Jens Hamje, Rolf Reiter and Volker Wesling
From the journal Materials Testing


During polymer extrusion there are a variety of situations in which the screwthread of the extrusion screw has an unlubricated metal-to-metal contact with the barrel wall. At the same time the screw coating is subjected to the highest loads. The combination of a secondary hardening cold work steel 1.2379 and a chromium nitride coating deposited by ARC-PVD, which is frequently used in polymer processing, is characterized and investigated. The characterization is done by metallographic examination, SEM and CLSM. The tests were performed on a pin-on-disk and a pin-roll test rig. Different roughness levels were tested on the pin-on-disk test, where massive differences in wear behavior were found. A hybrid surface structure is proposed to optimize the tribosystem. On the pin-on-disk test stand, rollers made of the same material pairing were tested. The test speed was varied to highlight differences and similarities between the tribological systems. A wear minimization of 50 % was achieved and the similarities between the tribological systems were highlighted. In addition, the investigations led to the development of a new model thesis which provides a reason for the development of stippling on the screw when processing polycarbonate.

Torben Buttler Institute of Welding and Machining Agricolastrasse 2 38678 Clausthal-Zellerfeld


This work was carried out by the Association of Industrial Research Associations “Otto von Guericke” e.V. (AiF) within the scope of the project “Belagbildung unter Betriebsbeanspruchung” (20333 N/3). Furthermore Dr. Wegewitz and Dr. Gustus (IEPT – Institute of Energy Research and Physical Technologies – TU Clausthal) are thanked for the production of the SEM images.



confocal laser scanning microscopy


focused ion beam


silicon dioxide


chromium nitride




arithmetic average roughness


averaged roughness depth


grinding papers grit size


1 H.-J. Bargel and G. Schulze: Werkstoffkunde. Berlin, Heidelberg, Springer Berlin Heidelberg, 2012 DOI:10.1007/978-3-642-17717-010.1007/978-3-642-17717-0Search in Google Scholar

2 G. Mennig and M. Lake: Verschleißminimierung in der Kunststoffverarbeitung: Phänomene und Schutzmaßnahmen, 2nd ed. München, Hanser, 2008Search in Google Scholar

3 E. Bürkle, F. Johannaber, and A. Kaminski: Verschleiß und Verschleißschutz beim Spritzgießen, Mat.-wiss. u. Werkstofftech. 26 (1995), No. 10, pp. 531-538, DOI:10.1002/mawe.1995026100810.1002/mawe.19950261008Search in Google Scholar

4 M. Sonnenberg: Wechselwirkung von Polycarbonat-Schmelze mit Werkzeug-Oberflächen als Ursache der Belagbildung in Kunststoffverarbeitungsmaschinen, Universitätsbibliothek Der TU Clausthal, 2019 DOI:10.21268/20190711-010.21268/20190711-0Search in Google Scholar

5 W. Tillmann, M. Dildrop, and T. Sprute: Influence of nitriding parameters on the tribological properties and the adhesion of Ti- and Cr-based multilayer designs, Surface and Coatings Technology 260 (2014), pp. 380-385 DOI:10.1016/j.surfcoat.2014.09.01710.1016/j.surfcoat.2014.09.017Search in Google Scholar

6 M. Cremer, E. Broszeit, G. Berg, and M. Heinze: Schichten in der Kunststoffverarbeitung: Mittels MSPVD abgeschiedene CrxN-Schichten eröffnen neue Möglichkeiten für den Verschleißschutz von Plastifiziereinheiten, Materialwissenschaft und Werkstofftechnik 29 (1998), No. 9, pp. 555-561 DOI:10.1002/mawe.1998029091410.1002/mawe.19980290914Search in Google Scholar

7 S. H. Yao and Y. L. Su: The tribological potential of CrN and Cr(C,N) deposited by multi-arc PVD process, Wear 212 (1997), No. 1, pp. 85-94 DOI:10.1016/S0043-1648(97)00128-210.1016/S0043-1648(97)00128-2Search in Google Scholar

8 K. Bobzin, G. Grundmeier, T. Brögelmann, T. de los Arcos, M. Wiesing and N. C. Kruppe: Nitridische und oxinitridische HPPMS-Beschichtungen für den Einsatz in der Kunststoffverarbeitung (Teil 1), Vakuum in Forschung und Praxis 28 (2016), No. 6, pp. 28-33, DOI:10.1002/vipr.20160063210.1002/vipr.201600632Search in Google Scholar

9 E. M. Slomski, H. Scheerer, T. Troßmann and C. Berger: Einfluss der HiPIMS-Parameter beim PVD-Verfahren, Vakuum in Forschung und Praxis 22 (2010), No. 4, pp. 22-25 DOI:10.1002/vipr.20100042810.1002/vipr.201000428Search in Google Scholar

10 L. Cunha, M. Andritschky, K. Pischow, and Z. Wang: Microstructure of CrN coatings produced by PVD techniques, Thin Solid Films 355-356 (1999), pp. 465-471 DOI:10.1016/S0040-6090(99)00552-010.1016/S0040-6090(99)00552-0Search in Google Scholar

11 T. Huben and J. Becker: Kohlenstoffbasierte Beschichtungen für automotive-Komponenten, Vakuum in Forschung und Praxis 24 (2012), No. 2, pp. 6-13 DOI:10.1002/vipr.20120048610.1002/vipr.201200486Search in Google Scholar

12 W. Michaeli, K. Bobzin, S. Hessner, A. Neuss, and F. Manz: PVD-Beschichtungen auf Plastifizierschnecken, Kunststoffe 8 (2006), No. 8, pp. 66-68Search in Google Scholar

13 M. Larsson, M. Bromark, P. Hedenqvist, and S. Hogmark: Deposition and mechanical properties of multilayered PVD Ti−TiN coatings, Surface and Coatings Technology 76-77 (1995), pp. 202-205 DOI:10.1016/0257-8972(95)02589-810.1016/0257-8972(95)02589-8Search in Google Scholar

14 K.-D. Bouzakis et al.: Adaption of graded Cr/CrN-interlayer thickness to cemented carbide substrates’ roughness for improving the adhesion of HPPMS PVD films and the cutting performance, Surface and Coatings Technology 205 (2010), No. 5, pp. 1564-1570 DOI:10.1016/j.surfcoat.2010.09.01010.1016/j.surfcoat.2010.09.010Search in Google Scholar

15 U. Wiklund, P. Hedenqvist, S. Hogmark: Multilayer cracking resistance in bending, Materials & Design 168 (2019), pp. 107670 DOI:10.1016/S0257-8972(97)00290-910.1016/S0257-8972(97)00290-9Search in Google Scholar

Published Online: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Scroll Up Arrow