Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter February 23, 2021

Preparation and fatigue behavior of graphene-based aerogel/epoxy nanocomposites

Ali Kordi, Saeed Adib Nazari, Ali Emam, Mohammad Najafi and Maryam Ghasabzadeh Saryazdi
From the journal Materials Testing

Abstract

In this research, the effect of adding graphene-based aerogel ((G)A) nanoparticles on the tensile and fatigue behavior of the epoxy polymer was investigated. Specimens of nanocomposites were prepared by adding 0.05, 0.1, 0.2, 0.5, 1, and 2 wt.-% (G)A nanoparticles to the epoxy polymer. Tensile tests revealed that the 0.1 wt.-% graphene-based aerogel/epoxy ((G)A/E) nanocomposites had the highest increase in tensile strength with 19 % growth compared to neat epoxy. Also, the tensile modulus increased by 15 % in the 0.5 wt.-% (G)A/E nanocomposites. A substantial improvement in fatigue life of the epoxy polymer was observed on adding 0.1 wt.-% (G)A nanoparticles. For instance, the fatigue life of (G)A/E nanocomposites improved by 236 % at a maximum stress of 35 MPa compared to the neat epoxy. Fractography in failure analysis of the test samples showed that the placement of (G)A porous nanoparticles on the epoxy polymer with crack twist or crack tilt prevent the formation of large and catastrophic cracks, resulting in delaying the fatigue failure.


Dr. Saeed Adib Nazari – Professor Department of Aerospace Engineering, Sharif University of Technology, Tehran, Iran Postal Address: 11356-11155

References

1 A. M. Dabrowska: Nanocarbon and its composites: Preparation, properties and applications, Woodhead Publishing Series in Composites Science and Engineering (2019), pp. 421-448 DOI:10.1016/B978-0-08-102509-3.00013-410.1016/B978-0-08-102509-3.00013-4Search in Google Scholar

2 B. Liu, L. B. Lessard: Fatigue and damage-tolerance analysis of composite laminates: Stiffness loss, damage-modelling, and life prediction, Composites Science and Technology 51 (1994), No. 1, pp. 43-51 DOI:10.1016/0266-3538(94)90155-410.1016/0266-3538(94)90155-4Search in Google Scholar

3 R. P. L. Nijssen: Phenomenological fatigue analysis and life modeling, Fatigue Life Prediction of Composites and Composite Structures, 2nd Ed., Woodhead Publishing, Cambridge, UK (2010), pp. 47-7810.1533/9781845699796.1.47Search in Google Scholar

4 N. L. Post, S. W. Case, J. J. Lesko: Modeling the variable amplitude fatigue of composite materials: A review and evaluation of the state of the art for spectrum loading, International Journal of Fatigue 30 (2008), No. 12, pp. 2064-2086 DOI:10.1016/j.ijfatigue.2008.07.00210.1016/j.ijfatigue.2008.07.002Search in Google Scholar

5 A. P. Vassilopoulos, T. Keller: Modeling the fatigue behavior of fiber-reinforced composite materials under constant amplitude loading, Springer, London, UK (2011), pp. 87-13910.1007/978-1-84996-181-3_4Search in Google Scholar

6 W. V. Paepegem: Fatigue damage modelling of composite materials with the phenomenological residual stiffness approach, Fatigue Life Prediction of Composites and Composite Structures, Woodhead Publishing, Cambridge, UK (2010), pp. 102-13810.1533/9781845699796.1.102Search in Google Scholar

7 M. R. Loos, J. Yang, D. L. Feke, I. Manas Zloczower, S. Unal, U. Younes: Enhancement of fatigue life of polyurethane composites containing carbon nanotubes, Composites Part B 44 (2013), pp. 740-744 10.1016/j.compositesb.2012.01.038Search in Google Scholar

8 M. Y. Shen, T. Y. Chang, T. H. Hsieh, Yi. L. Li, C. L. Chiang, H. Yang, M. C. Yip: Mechanical properties and tensile fatigue of graphene nanoplatelets reinforced polymer nanocomposites, Journal of Nanomaterials (2013), pp. 565401 DOI:10.1155/2013/56540110.1155/2013/565401Search in Google Scholar

9 M. M. Shokrieh, M. Esmkhani, F. Taheri Behrooz, A. R. Haghighatkhah: Displacement-controlled flexural bending fatigue behavior of graphene/epoxy nanocomposites, Journal of Composite Materials 48 (2014), pp. 2935-2944 DOI:10.1177/002199831350348310.1177/0021998313503483Search in Google Scholar

10 A. Y. Boroujeni, M. Al Haik: Carbon nanotube–Carbon fiber reinforced polymer composites with extended fatigue life, Composites Part B Engineering 164 (2019), pp. 537-545 10.1016/j.compositesb.2018.11.056Search in Google Scholar

11 A. Gaurav, K. K. Singh: Effect of pristine MWCNTs on the fatigue life of GFRP laminates – an experimental and statistical evaluation, Composites Part B Engineering 172 (2019), pp. 83-96 10.1016/j.compositesb.2019.05.069Search in Google Scholar

12 H. Guo, S. Jerrams, Z. Xu, Y. Zhou, L. Jiang, L. Zhang, L. Liu, S. Wen: Enhanced fatigue and durability of carbon black/natural rubber composites reinforced with graphene oxide and carbon nanotubes, Engineering Fracture Mechanics 223 (2020), pp. 106764 DOI:10.1016/j.engfracmech.2019.10676410.1016/j.engfracmech.2019.106764Search in Google Scholar

13 A. Gaurav, K. K. Singh: Fatigue life enhancement of quasi-isotropic symmetric GFRP laminate by doping MWCNTs, Materials Today Proceedings 4 (2017), pp. 7240-7245 DOI:10.1016/j.matpr.2017.07.05210.1016/j.matpr.2017.07.052Search in Google Scholar

14 M. A. Saeimi Sadigh, G. Marami: Enhancing fatigue life in adhesively bonded joints using reduced graphene oxide additive: Experimental and numerical evaluation, International Journal of Adhesion and Adhesives 84 (2018), pp. 283-290 DOI:10.1016/j.ijadhadh.2018.04.00110.1016/j.ijadhadh.2018.04.001Search in Google Scholar

15 S. Jangam, S. Raja, K. H. Reddy: Effect of multiwalled carbon nanotube alignment on the tensile fatigue behavior of nanocomposites, Journal of Composite Materials 52 (2018), pp. 2365-2374 DOI:10.1177/002199831774558510.1177/0021998317745585Search in Google Scholar

16 H. S. Hedia, S. M. Aldousari, A. Khairy, E. Aljabarti: Fatigue life behaviour of nanocomposite coated carbon steel, Materials Testing 54 (2012), No. 4, pp. 249-256 DOI:10.3139/120.11032510.3139/120.110325Search in Google Scholar

17 Y. S. Wei, S. K. Lu, P. Huang: Comparison of the simulation and experimental fatigue endurance behaviors in T6-treated nanosized SiC reinforced Al alloy composite, Advanced Materials Research 690 (2013), pp. 1762-1766 10.4028/www.scientific.net/AMR.690-693.1762Search in Google Scholar

18 K. Kim, J. Geringer, D. D. Macdonald: Crack simulation of nano-bioceramic composite microstructures with cohesive failure law: Effects of sintering, loads and time, Journal of the Mechanical Behavior of Biomedical Materials15 (2012), pp. 1-12 DOI:10.1016/j.jmbbm.2012.07.00310.1016/j.jmbbm.2012.07.003Search in Google Scholar

19 H. Hena-Zamal, S. V. Hoa: Fatigue damage behavior of glass/epoxy composites using carbon nanotubes as sensors, Proceedings of ICAF 2011 Structural Integrity: Influence of Efficiency and Green Imperatives, Springer, Amsterdam, The Netherlands (2011)10.1007/978-94-007-1664-3_15Search in Google Scholar

20 N. D. Alexopoulos, C. Bartholome, P. Poulin, Z. Marioli-Riga: Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers, Composites Science and Technology 70 (2010), No. 2, pp. 260-271 10.1016/j.compscitech.2009.10.017Search in Google Scholar

21 A. Vavouliotis, A. Paipetis, V. Kostopoulos: On the fatigue life prediction of CFRP laminates using the electrical resistance change method, Composites Science and Technology 71 (2011), No. 5, pp. 630-642 10.1016/j.compscitech.2011.01.003Search in Google Scholar

22 M. M. Shokrieh, M. Esmkhani: Fatigue life prediction of nanoparticle/fibrous polymeric composites based on the micromechanical and normalized stiffness degradation approaches, Journal of Materials Science 48 (2012), pp. 1027-1034 DOI:10.1007/s10853-012-6833-010.1007/s10853-012-6833-0Search in Google Scholar

23 M. M. Shokrieh, M. Esmkhani, F. Taheri-Behrooz: A novel model to predict the fatigue life of thermoplastic nanocomposites, Journal of Thermoplastic Composite Materials 28 (2015), pp. 1496-1506 DOI:10.1177/089270571351328910.1177/0892705713513289Search in Google Scholar

24 M. M. Shokrieh, M. Danesh, M. Esmkhani: A combined micromechanical-energy method to predict the fatigue life of nanoparticles/chopped strand mat/polymer hybrid nanocomposites, Composite Structures 133 (2015), pp. 886-891 10.1016/j.compstruct.2015.08.003Search in Google Scholar

25 R. Bojja, A. R. Anil Chandra, N. Jagannathan, C. M. Manjunatha: Micromechanics modeling and prediction of stiffness degradation behavior of a fiber reinforced polymer nanocomposite under block amplitude fatigue loads, Transactions of the Indian Institute of Metals 69 (2016), pp. 403-407 DOI:10.1007/s12666-015-0811-610.1007/s12666-015-0811-6Search in Google Scholar

26 E. Eryildiz, A. Uysal, E. Altan: Mechanical strength of single-lap joints bonded with nano graphene and MWCNT reinforced epoxy-based nanocomposite adhesives, Materials Testing 61 (2019), No. 4, pp. 349-352 DOI:10.3139/120.11132710.3139/120.111327Search in Google Scholar

27 A. Acar, O. Umit Çolak, Deniz Uzunsoy: Synthesis and characterization of grapheneepoxy nanocomposites, Materials Testing 57 (2015), No. 11-12, pp. 1001-1005 DOI:10.3139/120.11080410.3139/120.110804Search in Google Scholar

28 L. Cong, X. Li, L. Ma, Z. Peng, C. Yang, P. Han, G. Wang, H. Li, W. Song, G. Song: High-performance graphene oxide/carbon nanotubes aerogel-polystyrene composites: Preparation and mechanical properties, Materials Letters 214 (2018), pp. 190-193 DOI:10.1016/j.matlet.2017.12.01510.1016/j.matlet.2017.12.015Search in Google Scholar

29 V. Phetarporn, S. Loykulnant, C. Kongkaew, A. Seubsai, P. Prapainainar: Composite properties of graphene-based materials/natural rubber vulcanized using electron beam irradiation, Materials Today Communications 19 (2019), pp. 413-424 DOI:10.1016/j.mtcomm.2019.03.00710.1016/j.mtcomm.2019.03.007Search in Google Scholar

30 M. Bhasin, S. Wu, R. B. Ladani, A. J. Kinloch, C. H. Wang, A. P. Mouritz: Increasing the fatigue resistance of epoxy nanocomposites by aligning graphene nanoplatelets, International Journal of Fatigue 113 (2018), pp. 88-97 DOI:10.1016/j.ijfatigue.2018.04.00110.1016/j.ijfatigue.2018.04.001Search in Google Scholar

31 K. V. M. Kumar, K. Krishnamurthy, R. Rajasekar, P. S. Kumar, K. Pal, G. C. Nayak: Influence of graphene oxide on the static and dynamic mechanical behavior of compatibilized polypropylene nanocomposites, Materials Testing 61 (2019), No. 10, pp. 986-990 DOI:10.3139/120.11141110.3139/120.111411Search in Google Scholar

32 S. M. Aldousari, H. S. Hedia, F. W. H. Al Thobiani, N. Fouda: Influence of different nanomaterials on the mechanical properties of epoxy matrix composites. Materials Testing 60 (2018), No. 6, pp. 639-646 DOI:10.3139/120.11119910.3139/120.111199Search in Google Scholar

33 G. Gorgolis, C. Galiotis: Graphene aerogels: a review, 2D Materials 4 (2017), pp. 032001 DOI:10.1088/2053-1583/aa788310.1088/2053-1583/aa7883Search in Google Scholar

34 M. Wang, C. Shao, S. Zhou, J. Yang, F. Xu: Super-compressible, fatigue resistant and anisotropic carbon aerogels for piezoresistive sensors, Cellulose 25 (2018), pp. 7329-7340 DOI:10.1007/s10570-018-2080-010.1007/s10570-018-2080-0Search in Google Scholar

35 Y. Ma, Y. Chen: Three-dimensional graphene networks: synthesis, properties and applications, National Science Review 2 (2015), No. 1, pp. 40-53 DOI:10.1093/nsr/nwu07210.1093/nsr/nwu072Search in Google Scholar

36 X. Chen, Y. Lu, X. Zhang, F. Zhao: The thermal and mechanical properties of graphite foam/epoxy resin composites, Materials & Design 40 (2012), pp. 497-501 DOI:10.1016/j.matdes.2012.04.02610.1016/j.matdes.2012.04.026Search in Google Scholar

37 Z. Chen, W. Ren, L. Gao, B. Liu, S. Pei, H. M. Cheng: Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition, Nature Materials 10 (2011), pp. 424-428 DOI:10.1038/nmat300110.1038/nmat3001Search in Google Scholar

38 Y. Li, Y. A. Samad, K. Polychronopoulou, S. M. Alhassan, K. Liao: Highly electrically conductive nanocomposites based on polymer-infused graphene sponges, Scientific Reports 4 (2014), No. 4652 DOI:10.1038/srep0465210.1038/srep04652Search in Google Scholar

39 G. Tang, Z. G. Jiang, X. Li, H. B. Zhang, A. Dasari, Z. Z. Yu: Three dimensional graphene aerogels and their electrically conductive composites, Carbon 77 (2014), pp. 592-599 DOI:10.1016/j.carbon.2014.05.06310.1016/j.carbon.2014.05.063Search in Google Scholar

40 Z. Chen, C. Xu, C. Ma, W. Ren, H. M. Cheng: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding, Advanced Materials 25 (2013), pp. 1296-1300 DOI:10.1002/adma.20120419610.1002/adma.201204196Search in Google Scholar

41 J. Jia, X. Sun, X. Lin, X. Shen, Y. W. Mai, J. K. Kim: Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites, ACS Nano 8 (2014), pp. 5774-5783 DOI:10.1021/nn500590g10.1021/nn500590gSearch in Google Scholar

42 M. Yang, N. Zhao, Y. Cui, W. Gao, Q. Zhao, C. Gao, H. Bai, T. Xie: Biomimetic architectured graphene aerogel with exceptional strength and resilience, ACS nano 11 (2017), pp. 6817-6824 DOI:10.1021/acsnano.7b0181510.1021/acsnano.7b01815Search in Google Scholar

43 Z. M. Huang, X. Y. Liu, W. G. Wu, Y. Q. Li, H. Wang: Highly elastic and conductive graphene/carboxymethylcellulose aerogels for flexible strain-sensing materials, Journal of Materials Science 52 (2017), pp. 12540-12552 DOI:10.1007/s10853-017-1374-110.1007/s10853-017-1374-1Search in Google Scholar

44 Y. C. Chiou, H. Y. Chou, M. Y. Shen: Effects of adding graphene nanoplatelets and nanocarbon aerogels to epoxy resins and their carbon fiber composites, Materials and Design 178 (2019), pp. 107869 DOI:10.1016/j.matdes.2019.10786910.1016/j.matdes.2019.107869Search in Google Scholar

45 W. S. Hummers, R. E. Offeman: Preparation of graphitic oxide, Journal of the american chemical society 80 (1958), pp. 1339-1339 DOI:10.1021/ja01539a01710.1021/ja01539a017Search in Google Scholar

46 L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao: Synthesis, structure, and properties of boron- and nitrogen-doped graphene, Advanced Materials 21 (2009), pp. 4726-4730 DOI:10.1002/adma.20090128510.1002/adma.200901285Search in Google Scholar

47 J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye: One step hydrothermal synthesis of TiO 2-reduced graphene oxide sheets, Journal of Materials Chemistry 21 (2011), pp. 3415-3421 DOI:10.1039/C0JM03542D10.1039/C0JM03542DSearch in Google Scholar

48 D. S. Cruz, M. D. Green, Y. Ye, Y. A. Elabd, T. E. Long, K. I. Winey: Correlating backbone-to-backbone distance to ionic conductivity in amorphous polymerized ionic liquids, Journal of Polymer Science Part B: Polymer Physics 50 (2012), pp. 338-346 DOI:10.1002/polb.2301910.1002/polb.23019Search in Google Scholar

49 Y. Zhan, R. Zhao, F. Meng, Y. Lei, J. Zhong, X. Yang, X. Liu: Oriented growth of magnetite along the carbon nanotubes via covalently bonded method in a simple solvothermal system, Materials Science and Engineering B 176 (2011), pp. 779-784 DOI:10.1016/j.mseb.2011.03.01010.1016/j.mseb.2011.03.010Search in Google Scholar

50 S. G. Hosseini, S. Gholami, M. Mahyari: Superb catalytic properties of nickel cobalt bimetallic nanoparticles immobilized on 3D nitrogen-doped graphene for thermal decomposition of ammonium perchlorate, Research on Chemical Intermediates 45 (2019), pp. 1527-1543 DOI:10.1007/s11164-018-3677-510.1007/s11164-018-3677-5Search in Google Scholar

51 J. Senthilnathan, K. S. Rao, M. Yoshimura: Submerged liquid plasma–low energy synthesis of nitrogen-doped graphene for electrochemical applications, Journal of Materials Chemistry A 2 (2014), pp. 3332-3337 DOI:10.1039/C3TA14946C10.1039/C3TA14946CSearch in Google Scholar

52 Z. Li, C. Lu, Z. Xia, Y. Zhou, Z. Luo: X-ray diffraction patterns of graphite and turbostratic carbon, Carbon 45 (2007), pp. 1686-1695 DOI:10.1016/j.carbon.2007.03.03810.1016/j.carbon.2007.03.038Search in Google Scholar

53 S. Bose, T. Kuila, A. K. Mishra, N. H. Kim, J. H. Lee: Dual role of glycine as a chemical functionalizer and a reducing agent in the preparation of graphene: an environmentally friendly method, Journal of Materials Chemistry 22 (2012), pp. 9696-9703 DOI:10.1039/C2JM00011C10.1039/C2JM00011CSearch in Google Scholar

54 F. A. Tabar, F. Salehiravesh, H. Adelnia, J. N. Gavgani, M. Mahyari: High sensitivity ammonia detection using metal nanoparticles decorated on graphene macroporous frameworks/polyaniline hybrid, Talanta 197 (2019), pp. 457-464 DOI:10.1016/j.talanta.2019.01.06010.1016/j.talanta.2019.01.060Search in Google Scholar

55 S. G. Hosseini, S. Gholami, M. Mahyari: Highly dispersed Ni–Mn bimetallic nanoparticles embedded in 3D nitrogen-doped graphene as an efficient catalyst for the thermal decomposition of ammonium perchlorate, New Journal of Chemistry 42 (2018), pp. 5889-5899 DOI:10.1039/C8NJ00613J10.1039/C8NJ00613JSearch in Google Scholar

56 J. B. Knoll, B. T. Riecken, N. Kosmann, S. Chandrasekaran, K. Schulte, B. Fiedler: The effect of carbon nanoparticles on the fatigue performance of carbon fibre reinforced epoxy, Composites Part A: Applied Science and Manufacturing 67 (2014), pp. 233-240 10.1016/j.compositesa.2014.08.022Search in Google Scholar

Published Online: 2021-02-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany