Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2021

Fracture characterization and modeling of Gyroid filled 3D printed PLA structures

Ahmet Refah Torun, Ali Sinan Dike, Ege Can Yıldız, İsmail Sağlam and Naghdali Choupani
From the journal Materials Testing

Abstract

Polylactic acid (PLA) is a commonly used biodegradable material in medical and increasingly in industrial applications. These materials are often exposed to various flaws and faults due to working and production conditions, and increasing the demand for PLA for various applications requires a full understanding of its fracture behavior. In addition to ABS, PLA is a widely used polymeric material in 3D printing. The gyroid type of filling is advantageous for overcoming the relatively higher brittleness of PLA in comparison with conventional thermoplastic polymers. In this study, the effects of various filling ratios on the fracture toughness of 3D printed PLA samples with gyroid pattern were investigated numerically and experimentally for pure mode I, combined mode I/II, and pure mode II. Two-dimensional finite element modeling was created, and the two-dimensional functions of stress intensity coefficients were extracted in loading mode I, mode I/II, and mode II at varied filling ratios of the gyroid PLA samples. Mixed-mode fracture tests for 3D printed PLA samples with a gyroid pattern at various filling ratios were performed by using a specially developed fracture testing fixture. The results showed that the amount of fracture toughness of the samples under study in tensile mode was much higher than those values in shear mode. Also, as the percentages of the filling ratios in the samples increased, both tensile and shear fracture toughness improved.


Ahmet Refah Torun Department of Aerospace Engineering Adana Alparslan Türkeş Science and Technology University Balcalı, Çatalan Cd., 01250 Sarıçam/Adana, Turkey

References

1 S. Farah, D. G. Anderson, R. Langer: Physical and mechanical properties of PLA, and their functions in widespread applications – A comprehensive review, Advanced Drug Delivery Reviews 107 (2016), pp. 367-392 DOI:10.1016/j.addr.2016.06.01210.1016/j.addr.2016.06.012Search in Google Scholar PubMed

2 D. Garlotta: A literature review of poly (lactic acid), Journal of Polymers and the Environment 9 (2001), No. 2, pp. 63-84 DOI:10.1023/A:102020082243510.1023/A:1020200822435Search in Google Scholar

3 A. J. Lasprilla, A. G. Martinez, B. H. Lunelli, A. L. Jardini, R. M. Filho: Poly-lactic acid synthesis for application in biomedical devices – A review, Biotechnology Advances 30 (2012), No. 1, pp. 321-328 DOI:10.1016/j.biotechadv.2011.06.01910.1016/j.biotechadv.2011.06.019Search in Google Scholar PubMed

4 M. S. Lopes, A. L. Jardini, R. J. P. E. Maciel Filho: Poly (lactic acid) production for tissue engineering applications, Procedia Engineering 42 (2012), pp. 1402-1413 DOI:10.1016/j.proeng.2012.07.53410.1016/j.proeng.2012.07.534Search in Google Scholar

5 R. E. Drumright, P. R. Gruber, D. E. Henton: Polylactic acid technology, Advanced Materials 12 (2000), No. 23, pp. 1841-1846 DOI:10.1016/j.proeng.2012.07.53410.1016/j.proeng.2012.07.534Search in Google Scholar

6 M. Jamshidian, E. A. Tehrany, M. Imran, M. J. Akhtar, F. Cleymand, S. Desobry: Structural, mechanical and barrier properties of active PLA–antioxidant films, Journal of Food Engineering 110 (2012), No. 3, pp. 380-389 DOI:10.1016/j.jfoodeng.2011.12.03410.1016/j.jfoodeng.2011.12.034Search in Google Scholar

7 K. Modjarrad, S. Ebnesajjad (Eds.): Handbook of Polymer Applications in Medicine and Medical Devices, 1st Ed., Elsevier, San Diago, USA (2013)Search in Google Scholar

8 U. Tayfun M. Dogan: Improving the dyeability of poly (lactic acid) fiber using organoclay during melt spinning, Polymer Bulletin 73 (2016), No. 6, pp. 1581-1593 DOI:10.1080/00405000.2016.117553610.1080/00405000.2016.1175536Search in Google Scholar

9 A. Michalski, M. Brzezinski, G. Lapienis, T. Biela: Star-shaped and branched polylactides: synthesis, characterization, and properties, Progress in Polymer Science 89 (2019), pp. 159-212 DOI:10.1016/j.progpolymsci.2018.10.00410.1016/j.progpolymsci.2018.10.004Search in Google Scholar

10 P. P. Kalelkar, Z. Geng, M. G. Finn, D. M. Collard: Azide-Substituted Polylactide: A biodegradable substrate for antimicrobial materials via click chemistry attachment of quaternary ammonium groups, Biomacromolecules 20 (2019), No. 9, pp. 3366-3374 DOI:10.1021/acs.biomac.9b0050410.1021/acs.biomac.9b00504Search in Google Scholar PubMed

11 Q. Wang, Y. Li, X. Zhou, T. Wang, L. Qiu, Y. Gu, J. Chang: Toughened Poly (lactic acid)/ BEP composites with good biodegradability and cytocompatibility, Polymers 11 (2019), No. 9, No. 1413 DOI:10.3390/polym1109141310.3390/polym11091413Search in Google Scholar PubMed PubMed Central

12 D. D. Shaw, L. F. Pease III: Release of pharmaceutical cocktails from small polymeric micelles, Chemical Engineering Science 207 (2019), pp. 799-804 DOI:10.1016/j.ces.2019.05.05210.1016/j.ces.2019.05.052Search in Google Scholar

13 D. A. Rao, D. X. Nguyen, G. P. Mishra, B. S. Doddapaneni, A. W. Alani: Preparation and characterization of individual and multi-drug loaded physically entrapped polymeric micelles, Journal of Visualized Experiments 102 (2015), No. e53047 DOI:10.3791/5304710.3791/53047Search in Google Scholar PubMed PubMed Central

14 S. Vacaras, M. Baciut, O. Lucaciu, C. Dinu, G. Baciut, L. Crisan, I. Mitre: Understanding the basis of medical use of poly-lactide-based resorbable polymers and composites–a review of the clinical and metabolic impact, Drug Metabolism Reviews 51 (2019), No. 4, pp. 570-588 DOI:10.1080/03602532.2019.164291110.1080/03602532.2019.1642911Search in Google Scholar PubMed

15 S. Jacobsen, H. G. Fritz: Plasticizing polylactide – the effect of different plasticizers on the mechanical properties, Polymer Engineering and Science 39 (1999), No. 7, pp. 1303-1310 DOI:10.1002/pen.1151710.1002/pen.11517Search in Google Scholar

16 S. Sharma, A. A. Singh, A. Majumdar, B. S. Butola: Tailoring the mechanical and thermal properties of polylactic acid-based bionanocomposite films using halloysite nanotubes and polyethylene glycol by solvent casting process, Journal of Materials Science 54 (2019), No. 12, pp. 8971-8983 DOI:10.1007/s10853-019-03521-910.1007/s10853-019-03521-9Search in Google Scholar

17 N. Eselini, S. Tirkes, A. O. Akar, U. Tayfun: Production and characterization of poly (lactic acid)-based biocomposites filled with basalt fiber and flax fiber hybrid, Journal of Elastomers and Plastics 52 (2019) No. 8, pp. 701-716 DOI:10.1177/009524431988471610.1177/0095244319884716Search in Google Scholar

18 M. Todo, N. Shinohara, K. Arakawa: Effects of crystallization and loading-rate on the mode I fracture toughness of biodegradable poly (lactic acid), Journal of Materials Science Letters 21 (2002), pp. 1203-1206 DOI:10.1023/A:101652051895910.1023/A:1016520518959Search in Google Scholar

19 A. S. Dike: Improvement of mechanical and physical performance of poly (lactic acid) biocomposites by application of surface silanization for huntite–hydromagnesite mineral, Journal of Thermoplastic Composite Materials 15 (2020), on-line first DOI:10.1177/089270572093077610.1177/0892705720930776Search in Google Scholar

20 S. D. Park, M. Todo, K. Arakawa: Effect of annealing on the fracture toughness of poly (lactic acid), Journal of Materials Science 39 (2004), No. 3, pp. 1113-1116 DOI:10.1023/B:JMSC.0000012957.02434.1e10.1023/B:JMSC.0000012957.02434.1eSearch in Google Scholar

21 T. Takayama, M. Todo: Improvement of impact fracture properties of PLA/PCL polymer blend due to LTI addition, Journal of Materials Science 41 (2006), No. 15, pp. 4989-4992 DOI:10.1295/koron.63.62610.1295/koron.63.626Search in Google Scholar

22 R. M. Felfel, I. Ahmed, A. J. Parsons, P. Haque, G. S. Walker, C. D. Rudd: Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates, Journal of Biomaterials Applications 26 (2012), No. 7, pp. 765-789 DOI:10.1177/088532821038453210.1177/0885328210384532Search in Google Scholar PubMed

23 M. Behzadnasab, A. A. Yousefi, D. Ebrahimibagha, F. Nasiri: Effects of processing conditions on mechanical properties of PLA printed parts, Rapid Prototyping Journal 26 (2019), No. 2, pp. 381-389 DOI:10.1108/RPJ-02-2019-004810.1108/RPJ-02-2019-0048Search in Google Scholar

24 Y. Song, Y. Li, W. Song, K. Yee, K. Y. Lee, V. L. Tagarielli: Measurements of the mechanical response of unidirectional 3D-printed PLA, Materials and Design 123 (2017), pp. 154-164 DOI:10.1016/j.matdes.2017.03.05110.1016/j.matdes.2017.03.051Search in Google Scholar

25 M. Grasso, L. Azzouz, P. Ruiz-Hincapie, M. Zarrelli, G. Ren: Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens, Rapid Prototyping Journal 24 (2018), No. 8, pp. 1337-1346 DOI:10.1108/RPJ-04-2017-005510.1108/RPJ-04-2017-0055Search in Google Scholar

26 N. Gama, A. Ferreira, A. Barros-Timmons: 3D printed cork/polyurethane composite foams, Materials and Design 179 (2019), No. 107905 DOI:10.1016/j.matdes.2019.10790510.1016/j.matdes.2019.107905Search in Google Scholar

27 L. M. Alhallak, S. Tirkes, U. Tayfun: Mechanical, thermal, melt-flow and morphological characterizations of bentonite-filled ABS copolymer, Rapid Prototyping Journal 26 (2020), No. 7, pp. 1305-1312 DOI:10.1108/RPJ-12-2019-032110.1108/RPJ-12-2019-0321Search in Google Scholar

28 A. Zolfagharian, M. R. Khosravani, A. Kaynak: Fracture resistance analysis of 3D-printed polymers, Polymers 12 (2020), No. 2, No. 302 DOI:10.3390/polym1202030210.3390/polym12020302Search in Google Scholar PubMed PubMed Central

29 R. Hossein Abadi, A. R. Torun, A. Mohammadali Zadeh Fard, N. Choupani: Fracture characteristics of mixed-mode toughness of dissimilar adherends (cohesive and interfacial fracture), Journal of Adhesion Science and Technology 34 (2019), No. 6, pp. 599-615 DOI:10.1080/01694243.2019.167410210.1080/01694243.2019.1674102Search in Google Scholar

30 A. Rahmani, N. Choupani, H. Kurtaran: Thermo-fracture analysis of composite-aluminum bonded joints at low temperatures: Experimental and numerical analyses, International Journal of Adhesion and Adhesives 95 (2019), No. 102422 DOI:10.1016/j.ijadhadh.2019.10242210.1016/j.ijadhadh.2019.102422Search in Google Scholar

31 M. Shameli, N. Choupani: Fracture criterion of woven glass-epoxy composite using a new modified mixed-mode loading fixture, International Journal of Applied Mechanics 8 (2016), No. 2, No. 1650015 DOI:10.1142/S175882511650015010.1142/S1758825116500150Search in Google Scholar

32 A. R. Torun, Ş. H. Kaya, N. Choupani: Mixed-mode fracture behavior of 3D-printed PLA with zigzag filling, Green Materials 8 (2020), online first DOI:10.1680/jgrma.20.0001310.1680/jgrma.20.00013Search in Google Scholar

Published Online: 2021-05-23
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Scroll Up Arrow