Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter May 23, 2021

Experimental and numerical investigation of cutting forces during turning of cylindrical AISI 4340 steel specimens

Oğur İynen, Abdul Kadir Ekşi, Mustafa Özdemir and Hamza Kemal Akyıldız
From the journal Materials Testing

Abstract

Cutting forces play a significant role in machining because they directly affect the mechanics of machining, the energy requirements, and the tool stability required. In this study, the cutting forces occurring during the turning of AISI 4340 material with 30 Rockwell C hardness scale have been analyzed both experimentally and numerically. Many types of research have been conducted via 2-D simulation using the finite element analysis method. In other words, in most studies, the workpiece was modeled as a flat specimen. Therefore, this paper presents a real 3-D turning simulation model using cylindrical specimens. The cutting forces were measured using a Kistler 9129AA model piezoelectric dynamometer. The ABAQUS/Explicit finite element method was used, and a model by Johnson and Cook was assigned as a material model in the numerical analysis. A new PVD AlTiN coated carbide insert was incorporated to prevent wear. Experimental results obtained from cutting tests were compared with numerical results to establish the accuracy of the FEM. It was observed that experimental and numerical results overlapped each other. Thus, this method can be used directly in the industry to reduce high processing costs.


Associate Prof. Dr. Mustafa Özdemir Machine and Metal Technology Department Vocational High School Bozok University Esentepe Campus 66200 Yozgat, Turkey

Acknowledgement

This paper has been supported by a doctoral thesis project of Çukurova and Bozok Universities (Scientific Research Project No: 2015MMF/A189). The authors would like to make a grateful acknowledgement for all support.

References

1 R. Fakir, N. Barka, J. Brousseau: Mechanical properties analysis of 4340 Steel specimen treated in oven and quenching in three different fluids, Metals and Materials International 24 (2018), No. 5, pp. 981-991 DOI:10.1007/s12540-018-0120-910.1007/s12540-018-0120-9Search in Google Scholar

2 A. Şahinoğlu, M. Rafighi: Optimization of cutting parameters with respect to roughness for machining of hardened AISI 1040 steel, Materials Testing 62 (2020), No.1, pp. 85-95 DOI:10.3139/120.11145810.3139/120.111458Search in Google Scholar

3 A. Attanasio, E. Cerettia, C. Giardini: 3D FEM Simulation of flank wear in turning, AIP Conference Proceedings 1353 (2011), No. 1, pp. 561-566 DOI:10.1063/1.358957410.1063/1.3589574Search in Google Scholar

4 K. Gök: Development of three-dimensional finite element model to calculate the turning processing parameters in turning operations, Measurement 75 (2015), pp. 57-68 DOI:10.1016/j.measurement.2015.07.03410.1016/j.measurement.2015.07.034Search in Google Scholar

5 E. Ceretti, C. Lazzaroni, L. Menegardo, T. Altan: Turning simulations using a three-dimensional FEM code, Journal of Materials Processing Technology 98 (2000), No. 1, pp. 99 -103 DOI:10.1016/S0924-0136(99)00310-610.1016/S0924-0136(99)00310-6Search in Google Scholar

6 T. Özel, E. Zeren: Determination of work material flow stress and friction for FEA of machining using orthogonal cutting tests, Journal of Materials Processing Technology 153-154 (2004), pp. 1019-1025 DOI:10.1016/j.jmatprotec.2004.04.16210.1016/j.jmatprotec.2004.04.162Search in Google Scholar

7 M. Guedicheab, T. Mabroukibc, C. Donnet, M. Bergheaua, H. Hamdi: A new procedure to increase the orthogonal cutting machining time simulated, Procedia CIRP 31 (2015), pp. 299-303 DOI:10.1016/j.procir.2015.04.09610.1016/j.procir.2015.04.096Search in Google Scholar

8 D. Sreeramulu, C. J. Rao, Y. Sagar, M. Venkatesh: Finite element modeling and machining of Al 7075 using coated cutting tools, Materials Today: Proceedings 5 (2018), No. 2, pp. 8364-8373 DOI:10.1016/j.matpr.2017.11.53010.1016/j.matpr.2017.11.530Search in Google Scholar

9 C. Maranhão, J. P. Davim: Finite element modelling of machining of AISI 316 steel: Numerical simulation and experimental validation, Simulation Modelling Practice and Theory 18 (2010), No. 2, pp. 139-156 DOI:10.1016/j.simpat.2009.10.00110.1016/j.simpat.2009.10.001Search in Google Scholar

10 V. Vijayaraghavan, A. Garg, L. Gao, R. Vijayaraghavan, G. Lu: A finite element based data analytics approach for modeling turning process of Inconel 718 alloys, Journal of Cleaner Production 137 (2016), pp. 1619-1627 DOI:10.1016/j.jclepro.2016.04.01010.1016/j.jclepro.2016.04.010Search in Google Scholar

11 M. S. Kumar, S. R. Reddy, V. Vasu: A 3-D Simulation and Experimental Study of Cutting Forces in Turning Inconel-718, Materials Today: Proceedings 4 (2017), No. 9, pp. 9942-9945 DOI:10.1016/j.matpr.2017.06.29810.1016/j.matpr.2017.06.298Search in Google Scholar

12 A. K. Parida, K. Maity: FEM analysis and experimental investigation of force and chip formation on hot turning of Inconel 625, Defence Technology 15 (2019), No. 6, pp. 853-860 DOI:10.1016/j.dt.2019.04.01210.1016/j.dt.2019.04.012Search in Google Scholar

13 M. S. Buruaga, L. Gainza, P. Aristimuno, D. Soler, G. O. Zarate, O. Aizpuru, R. Mielgo, P. J. Arrazola: FEM modeling hard turning 42CrMoS4 steel, Procedia CIRP 82 (2019), pp. 77-82 DOI:10.1016/j.procir.2019.04.05910.1016/j.procir.2019.04.059Search in Google Scholar

14 A. K. Kumar, P. Venkataramaiah: Heat assisted machining of Inconel 718 Alloy using Abaqus/ Explicit, Materials Today: Proceedings 18 (2019), 7, pp. 4531-4536 DOI:10.1016/j.matpr.2019.07.42410.1016/j.matpr.2019.07.424Search in Google Scholar

15 R. A. Mali, M. D. Agrahari, T. V. K. Gupta: FE based simulation and experimental validation of forces in dry turning of aluminium 7075, Materials Today: Proceedings 27 (2020), Part 3, pp. 2319-2323 DOI:10.1016/j.matpr.2019.09.12010.1016/j.matpr.2019.09.120Search in Google Scholar

16 M. Verma, S. K. Pradhan: Experimental and numerical investigations in CNC turning for different combinations of tool inserts and workpiece material, Materials Today: Proceedings 27 (2020), Part 3, pp. 2736-2743 DOI:10.1016/j.matpr.2019.12.19310.1016/j.matpr.2019.12.193Search in Google Scholar

17 M. Sadeghifar, R. Sedaghati, W. Jomaa, V. Songmene: A comprehensive review of finite element modeling of orthogonal machining process: chip formation and surface integrity predictions, The International Journal of Advanced Manufacturing Technology 96 (2018), pp. 3747-3791 DOI:10.1007/s00170-018-1759-610.1007/s00170-018-1759-6Search in Google Scholar

18 A. Elkaseer, A. Abdelaziz, M. Saber, A. Nassef: FEM-Based Study of Precision Hard Turning of Stainless Steel 316 L, Materials 12 (2019), No. 16, 2522, pp. 1-16 DOI:10.3390/ma1216252210.3390/ma12162522Search in Google Scholar

19 ASTM E407-07(2015)e1: Standard Practice for Microetching Metals and Alloys, ASTM International, West Conshohocken, Pennsylvania, USA (2011)Search in Google Scholar

20 ASTM E140-12be1: Standard Hardness Conversion Tables for Metals Relationship Among Brinell Hardness, Vickers Hardness, Rockwell Hardness, Superficial Hardness, Knoop Hardness, Scleroscope Hardness, and Leeb Hardness, ASTM International, West Conshohocken, Pennsylvania, USA (2012)Search in Google Scholar

21 ASTM E18-15: Standard Test Methods for Rockwell Hardness of Metallic Materials, ASTM International, West Conshohocken, Pennsylvania, USA (2015)Search in Google Scholar

22 ASTM E8/E8M-15a: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohocken, Pennsylvania, USA (2015)Search in Google Scholar

23 E. Ceretti, P. Fallböhmer, W. T. Wu, T. Altan: Application of 2D FEM to chip formation in orthogonal cutting, Journal of Materials Processing Technology 59 (1996), No. 1-2, pp. 169-180 DOI:10.1016/0924-0136(96)02296-010.1016/0924-0136(96)02296-0Search in Google Scholar

24 K. H. Salman, A. H. Elsheikh, M. Ashham, M. K. A. Ali, M. Rashad, Z. Haiou: Effect of cutting parameters on surface residual stresses in dry turning of AISI 1035 alloy, Journal of the Brazilian Society of Mechanical Sciences and Engineering 41 (2019), No. 349, pp. 1-12 DOI:10.1007/s40430-019-1846-010.1007/s40430-019-1846-0Search in Google Scholar

25 A. M. El-Tamimi, T. M. El-Hossainy: Investigating the machinability of AISI 420 stainless steel using factorial design, Materials and Manufacturing Processes 23 (2008), No. 4, pp. 419-426 DOI:10.1080/1042691080197483810.1080/10426910801974838Search in Google Scholar

26 M. E. Korkmaz, M. Günay: Finite element modelling of cutting forces and power consumption in turning of AISI 420 martensitic stainless steel, Arabian Journal for Science and Engineering 43 (2018), pp. 4863-4870 DOI:10.1007/s13369-018-3204-410.1007/s13369-018-3204-4Search in Google Scholar

27 P. J. Arrazola, T. Özel: Investigations on the effects of friction modeling in finite element simulation of machining, International Journal of Mechanical Sciences 52 (2010), No. 1, pp. 31-42 DOI:10.1016/j.ijmecsci.2009.10.00110.1016/j.ijmecsci.2009.10.001Search in Google Scholar

28 G. R. Johnson, W. H. Cook: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Engineering Fracture Mechanics 21 (1985), No. 1, pp. 31-48 DOI:10.1016/0013-7944(85)90052-910.1016/0013-7944(85)90052-9Search in Google Scholar

29 A. Shrot, M. Bäker: Determination of Johnson– Cook parameters from machining simulations, Computational Materials Science 52 (2012), pp. 298-304 10.1016/j.commatsci.2011.07.035Search in Google Scholar

30 S. Maski, Y. Basavaraj: Finite Element Analysis of Engine Mounting Bracket by Considering Pretension Effect and Service Load. International Journal of Research in Engineering and Technology, 4 (2015), pp. 327-33310.15623/ijret.2015.0408056Search in Google Scholar

31 P. J. Arrazola, T. Ozel: Numerical modelling of 3D hard turning using arbitrary Lagrangian Eulerian finite element method. International Journal of Machining and Machinability of Materials, 4 (2008), No. 1, pp. 14-25 DOI:10.1504/IJMMM.2008.02090710.1504/IJMMM.2008.020907Search in Google Scholar

32 Sandvik Coromant, General Turning https://www.sandvik.coromant.com/en-gb/knowledge/general-turning/pages/how-to-choose-correct-turning-insert.aspx?Country=iq accessed January 4, 2021Search in Google Scholar

33 A. Kurt, U. Şeker: The effect of chamfer angle of polycrystalline cubic boron nitride cutting tool on the cutting forces and the tool stresses in finishing hard turning of AISI 52100 steel, Materials and Design 26 (2005), pp. 351-356 DOI:10.1016/j.matdes.2004.06.02210.1016/j.matdes.2004.06.022Search in Google Scholar

Published Online: 2021-05-23
Published in Print: 2021-05-26

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Scroll Up Arrow