Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 30, 2021

Optimization of constrained mechanical design problems using the equilibrium optimization algorithm

Hammoudi Abderazek

Dr. Hammoudi Abderazek received his Ph.D. in Mechanical Engineering from the Institute of Optics and Precision Mechanics, Setif -1- University, Algeria. His research interests include multidisciplinary design optimization and metaheuristic optimization techniques. Dr. Abderazek has been working at the Mechanical Research Center (CRM), Constantine, Algeria.

, Ali Riza Yildiz

Dr. Ali Rıza Yıldız is a Professor in the Department of Automotive Engineering, Bursa Uludağ University, Bursa, Turkey. His research interests are the finite element analysis of automobile components, lightweight design, composite materials, vehicle design, vehicle crashworthiness, shape and topology optimization of vehicle components, meta-heuristic optimization techniques, and sheet metal forming. He has been serving as an Associate Editor for the Journal of Expert Systems, Wiley.

EMAIL logo
and Sadiq M. Sait

Dr. Sadiq M. Sait received his Bachelor’s degree in Electronics Engineering from Bangalore University, India, in 1981, and his Master’s and Ph.D. degrees in Electrical Engineering from the King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, in 1983 and 1987, respectively. He is currently a Professor of Computer Engineering and Director of the Center for Communications and IT Research, KFUPM, Dhahran, Saudi Arabia. He is a Senior Member of the IEEE. In 1981, he received the Best Electronic Engineer Award from the Indian Institute of Electrical Engineers, Bengaluru.

From the journal Materials Testing

Abstract

In this work, the optimization of structural and mechanical problems is carried out using the equilibrium optimizer (EO), which is a recent physical-based algorithm.The the ten-bar planar truss structure, planetary gearbox, hydrostatic thrust bearing, and robot gripper mechanism problems are solved using the EO algorithm. The results achieved using the EO in solving these problems are compared with those of recent algorithms. The computational results show that EO yields better outcomes and competitive results that can also be applied for the other problems studied.


Prof. Dr. Ali Rıza Yıldız Department of Automotive Engineering Uludağ University Görükle, Bursa, Turkey

About the authors

Dr. Hammoudi Abderazek

Dr. Hammoudi Abderazek received his Ph.D. in Mechanical Engineering from the Institute of Optics and Precision Mechanics, Setif -1- University, Algeria. His research interests include multidisciplinary design optimization and metaheuristic optimization techniques. Dr. Abderazek has been working at the Mechanical Research Center (CRM), Constantine, Algeria.

Prof. Dr. Ali Riza Yildiz

Dr. Ali Rıza Yıldız is a Professor in the Department of Automotive Engineering, Bursa Uludağ University, Bursa, Turkey. His research interests are the finite element analysis of automobile components, lightweight design, composite materials, vehicle design, vehicle crashworthiness, shape and topology optimization of vehicle components, meta-heuristic optimization techniques, and sheet metal forming. He has been serving as an Associate Editor for the Journal of Expert Systems, Wiley.

Dr. Sadiq M. Sait

Dr. Sadiq M. Sait received his Bachelor’s degree in Electronics Engineering from Bangalore University, India, in 1981, and his Master’s and Ph.D. degrees in Electrical Engineering from the King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, in 1983 and 1987, respectively. He is currently a Professor of Computer Engineering and Director of the Center for Communications and IT Research, KFUPM, Dhahran, Saudi Arabia. He is a Senior Member of the IEEE. In 1981, he received the Best Electronic Engineer Award from the Indian Institute of Electrical Engineers, Bengaluru.

Acknowledgment

The authors express their gratitude to Bursa Uludağ University, Bursa, Turkey, and King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia, for support in this research.

References

1 H. Abderazek, A. R. Yildiz, S. M. Sait: Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 121-136 DOI:10.1504/IJVD.2019.10986210.1504/IJVD.2019.109862Search in Google Scholar

2 H. Abderazek, A. R. Yildiz, S. M. Sait: Mechanical engineering design optimisation using novel adaptive differential evolution algorithm, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 285-329 DOI:10.1504/IJVD.2019.10987310.1504/IJVD.2019.109873Search in Google Scholar

3 B. S. Yıldız: The spotted hyena optimizationalgorithm for weight-reduction of automobile brake components, Materials Testing 62 (2020), No. 4, pp. 383-388 DOI:10.3139/120.11149510.3139/120.111495Search in Google Scholar

4 B. S. Yildiz: The mine blast algorithm for the structural optimization of electrical vehicle components, Materials Testing 62 (2020), No. 5, pp. 497-501 DOI:10.3139/120.11151110.3139/120.111511Search in Google Scholar

5 E. Demirci, A. R. Yıldız: An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different cross-sections for vehicle thin-walled energy absorbers, Materials Testing 60 (2018), No. 7-8, pp. 661-668 DOI:10.3139/120.11120110.3139/120.111201Search in Google Scholar

6 H. Abderazek, A. R. Yildiz, S. Mirjalili: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism, Knowledge-Based Systems 105 (2020), No. 105237 DOI:10.1016/j.knosys.2019.10523710.1016/j.knosys.2019.105237Search in Google Scholar

7 E. Kurtuluş, A. R. Yildiz, S. M. Sait, S. Bureerat: A novel hybrid Harris hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails, Materials Testing 62 (2020), No. 3, pp. 251-260 DOI:10.3139/120.11147810.3139/120.111478Search in Google Scholar

8 B. S. Yildiz, A. R. Yildiz, N. Pholdee, S. Bureerat, S. M. Sait, V. Patel: The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components, Materials Testing 62 (2020), No. 3, pp. 261-264 DOI:10.3139/120.11147910.3139/120.111479Search in Google Scholar

9 H. Ozkaya, M. Yildiz, A. R. Yildiz, S. Bureerat, B. S. Yildiz, Sadiq M. Sait: The equilibrium optimizationalgorithm and the response surface based metamodel for optimal structural design of vehicle components, Materials Testing 62 (2020), pp. 492-496 DOI:10.3139/120.11150910.3139/120.111509Search in Google Scholar

10 P. Champasak, N.Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz: Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle, Aerospace Science and Technology 100 (2020), pp. 1-11 DOI:10.1016/j.ast.2020.10578310.1016/j.ast.2020.105783Search in Google Scholar

11 T. Guler, A. Demirci, A. R. Yıldız, U. Yavuz: Lightweight design of an automobile hinge component using glass fiber polyamide composites, Materials Testing 60 (2018), No. 3, pp. 306-310 DOI:10.3139/120.11115210.3139/120.111152Search in Google Scholar

12 A. R. Yildiz, H. Abderazek, S. Mirjalili: A Comparative Study of Recent Non-traditional Methods for Mechanical Design Optimization, Archives of Computational Methods in Engineering 27 (2020), pp. 1031-1048 DOI:10.1007/s11831-019-09343-x10.1007/s11831-019-09343-xSearch in Google Scholar

13 A. R. Yildiz, B. S. Yildiz, S. M. Sait, X. Li: The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations, Materials Testing 61 (2019), pp. 725-733 DOI:10.3139/120.11137710.3139/120.111377Search in Google Scholar

14 A. R. Yildiz, B. S. Yildiz, S. M. Sait, S. Bureerat, N. Pholdee: A new hybrid Harris hawks Nelder-Mead optimization algorithm for solving design and manufacturing problems, Materials Testing 61 (2019), No. 8, pp. 735-743 DOI:10.3139/120.11137810.3139/120.111378Search in Google Scholar

15 B. S. Yildiz, A. R. Yildiz: The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components, Materials Testing 61 (2019), pp. 744-748 DOI:10.3139/120.11137910.3139/120.111379Search in Google Scholar

16 F. Hamza, H. Abderazek, S. Lakhdar, D. Ferhat, A. R. Yildiz: Optimum design of cam-roller follower mechanism using a new evolutionary algorithm, The International Journal of Advanced Manufacturing Technology 99 (2018), No. 5-8, pp. 1261-1282 DOI:10.1007/s00170-018-2543-310.1007/s00170-018-2543-3Search in Google Scholar

17 B. S. Yildiz, A. R. Yildiz: Comparison of grey wolf, whale, water cycle, moth-flame and sine-cosine algorithms for the optimization of a vehicle engine connecting rod, Materials Testing 60 (2018), No. 3, pp. 311-315 DOI:10.3139/120.11115310.3139/120.111153Search in Google Scholar

18 H. Abderazek, D. Ferhat, A. Ivana: Adaptive mixed differential evolution algorithm for biobjective tooth profile spur gear optimization, The International Journal of Advanced Manufacturing Technology 90 (2017), No. 5-8, pp. 2063-2073 DOI:10.1007/s00170-016-9523-210.1007/s00170-016-9523-2Search in Google Scholar

19 A. R. Yildiz: A novel hybrid whale nelder mead algorithm for optimization of design and manufacturing problems, International Journal of Advanced Manufacturing Technology 105 (2019), pp. 5091-5104 DOI:10.1007/s00170-019-04532-110.1007/s00170-019-04532-1Search in Google Scholar

20 B. S. Yıldız, N. Pholdee, S. Bureerat, A. R. Yildiz, Sadiq M. Sait: Sine-cosine optimization algorithm for the conceptual design of automobile components, Materials Testing 62 (2020), pp. 744-748 DOI:10.3139/120.11154110.3139/120.111541Search in Google Scholar

21 A. Karaduman, B. S. Yıldız, A. R. Yıldız: Experimental and numerical fatigue-based design optimisation of clutch diaphragm spring in the automotive industry, International Journal of Vehicle Design 80 (2020), No. 2-4, pp. 330-345 DOI:10.1504/IJVD.2019.10987510.1504/IJVD.2019.109875Search in Google Scholar

22 B. Aslan, A. R. Yildiz: Optimum design of automobile components using lattice structures for additive manufacturing, Materials Testing 52 (2020), No. 6, pp. 633-639 DOI:10.3139/120.11152710.3139/120.111527Search in Google Scholar

23 B. S. Yildiz: A comparative investigation of eight recent population-based optimisation algorithms for mechanical and structural design problems, International Journal of Vehicle Design 73 (2017), No. 1-3, pp. 208-218 DOI:10.1504/IJVD.2017.08260310.1504/IJVD.2017.082603Search in Google Scholar

24 N. Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz, Sadiq M. Sait: Seagull optimization algorithm for solving real-world design optimization problems, Materials Testing 62 (2020), pp. 640-644 DOI:10.3139/120.11152910.3139/120.111529Search in Google Scholar

25 P. P. Prajapati, V. K. Patel: Thermo-economic optimization of a nanofluid based organic Rankine cycle: a multiobjective study and analysis, Thermal Science and Engineering Progress (2019), No. 100381 DOI:10.1016/j.tsep.2019.10038110.1016/j.tsep.2019.100381Search in Google Scholar

26 A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, H. L. Chen: Harris hawks optimization: Algorithm and applications, Future generation computer systems 97 (2019), pp. 849-872 DOI:10.1016/j.future.2019.02.02810.1016/j.future.2019.02.028Search in Google Scholar

27 E. Demirci, A. R. Yıldız: A new hybrid approach for reliability-based design optimization of structural components, Materials Testing 61 (2019), No. 2, pp. 111-119 DOI:10.3139/120.11129110.3139/120.111291Search in Google Scholar

28 H. Abderazek, D. Ferhat, I. Atanasovska, K. Boualem: A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears, Advances in Mechanical Engineering 7 (2015), No. 9, pp. 1-11 DOI:10.1177/168781401560500810.1177/1687814015605008Search in Google Scholar

29 T. Kunakote, S. Bureerat: Multiobjective topology optimization using evolutionary algorithms, Engineering Optimization 43 (2011), No. 5, pp. 541-557 DOI:10.1080/0305215X.2010.50293510.1080/0305215X.2010.502935Search in Google Scholar

30 A. R. Yildiz, F. Öztürk: Hybrid Taguchi-harmony search approach for shape optimization, Studies in Computational Intelligence 270 (2010), pp. 89-98 DOI:10.1007/978-3-642-04317-8_810.1007/978-3-642-04317-8_8Search in Google Scholar

31 A. Kaveh, S. Talatahari: An improved ant colony optimization for constrained engineering design problems, Engineering Computations 27 (2010), pp. 155-182 DOI:10.1108/0264440101100857710.1108/02644401011008577Search in Google Scholar

32 A. R. Yıldız, U. A. Kılıçarpa, E. Demirci: Topography and topology optimization of diesel engine components for light-weight design in the automotive industry, Materials Testing 61 (2019), No. 1, pp. 27-34 DOI:10.3139/120.11127710.3139/120.111277Search in Google Scholar

33 B. S. Yildiz: Natural frequency optimization of vehicle components using the interior search algorithm, Materials Testing 59 (2017), No. 5, pp. 456-458 DOI:10.3139/120.11101810.3139/120.111018Search in Google Scholar

34 G. G. Tejani, N. Pholdee, S. Bureerat, D. Prayogo, A. H. Gandomi: Structural optimization using multiobjective modified adaptive symbiotic organisms search, Expert Systems with Applications 125 (2019), pp. 425-441 DOI:10.1016/j.eswa.2019.01.06810.1016/j.eswa.2019.01.068Search in Google Scholar

35 C. Qi, S. Yang, F. Dong: Crushing analysis and multiobjective crashworthiness optimization of tapered square tubes under oblique impact loading, Thin-Walled Structures 59 (2012), pp. 103-119 DOI:10.1016/j.tws.2012.05.00810.1016/j.tws.2012.05.008Search in Google Scholar

36 X. Suchao, L. Haihong, Y. Weilin, N. Wang: Crashworthiness optimisation of a composite energy-absorbing structure for railway vehicles. Structural and Multidisciplinary Optimization 57 (2018), No. 4, pp. 1793-1807 DOI:10.1007/s00158-017-1829-710.1007/s00158-017-1829-7Search in Google Scholar

37 J. Huang, L. Gao, X. Li: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes, Applied Soft Computing 36 (2015), pp. 349-356 DOI:10.1016/j.asoc.2015.07.03110.1016/j.asoc.2015.07.031Search in Google Scholar

38 A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili: Equilibrium optimizer: A novel optimization algorithm, Knowledge-Based Systems 191 (2020), pp. 105190 DOI:10.1016/j.knosys.2019.10519010.1016/j.knosys.2019.105190Search in Google Scholar

39 T. Dede: Application of teaching-learning-based-optimization algorithm for the discrete optimization of truss structures, KSCE Journal of Civil Engineering 18 (2014), No. 6, pp. 1759-1767 DOI:10.1007/s12205-014-0553-810.1007/s12205-014-0553-8Search in Google Scholar

40 B. W. Xiang, R. Q. Chen, T. Zhang: Optimization of trusses using simulated annealing for discrete variables, Proc. of the International Conference on Image Analysis and Signal Processing (2009l), pp. 410-41410.1109/IASP.2009.5054647Search in Google Scholar

41 A. Sadollah, A. Bahreininejad, H. Eskandar, M. Hamdi: Mine blast algorithm for optimization of truss structures with discrete variables, Computers and Structures 102 (2012), pp. 49-63 DOI:10.1016/j.compstruc.2012.03.01310.1016/j.compstruc.2012.03.013Search in Google Scholar

42 V. Ho-Huu, T. Nguyen-Thoi, T. Vo-Duy, T. Nguyen-Trang: An adaptive elitist differential evolution for truss optimization with discrete variables, Computers and Structures 165 (2016), pp. 59-75 DOI:10.1016/j.compstruc.2015.11.01410.1016/j.compstruc.2015.11.014Search in Google Scholar

43 S. O. Degertekin, L. Lamberti, I. B. Ugur: Discrete sizing/layout/topology optimization of truss structures with an advanced Jaya algorithm, Applied Soft Computing 79 (2019), pp. 363-390 DOI:10.1016/j.asoc.2019.03.05810.1016/j.asoc.2019.03.058Search in Google Scholar

44 M. Y. Cheng, D. Prayogo, Y. W. Wu, M. M. Lukito: A hybrid harmony search algorithm for discrete sizing optimization of truss structure, Automation in Construction 69 (2016), pp. 21-33 DOI:10.1016/j.autcon.2016.05.02310.1016/j.autcon.2016.05.023Search in Google Scholar

45 P. Simionescu, D. Beale, G. V. Dozier: Teeth-number synthesis of a multispeed planetary transmission using an estimation of distribution algorithm, Journal of mechanical design 128 (2006), No. 1, pp. 108-115 DOI:10.1115/1.211486710.1115/1.2114867Search in Google Scholar

46 P. Savsani, V. Savsani: Passing vehicle search (PVS): A novel metaheuristic algorithm, Applied Mathematical Modelling 40 (2016), No. 5-6, pp. 3951-3978 DOI:10.1016/j.apm.2015.10.04010.1016/j.apm.2015.10.040Search in Google Scholar

47 J. Zhang, M. Xiao, L.Gao, Q. Pan: Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems, Applied Mathematical Modelling 63 (2018), pp. 464-490 DOI:10.1016/j.apm.2018.06.03610.1016/j.apm.2018.06.036Search in Google Scholar

48 C. Coello: Treating constraints as objectives for single-objective evolutionary optimization, Engineering Optimization A 35 (2000), No. 3, pp. 275-308 DOI:10.1080/0305215000894130110.1080/03052150008941301Search in Google Scholar

49 A. W. Mohamed: A novel differential evolution algorithm for solving constrained engineering optimization problems, Journal of Intelligent Manufacturing 29 (2018), No. 3, pp. 659-692 DOI:10.1007/s10845-017-1294-610.1007/s10845-017-1294-6Search in Google Scholar

50 W. Gong, Z. Cai, D. Liang: Engineering optimization by means of an improved constrained differential evolution, Computer Methods in Applied Mechanics and Engineering 268 (2014), pp. 884-904 DOI:10.1016/j.cma.2013.10.01910.1016/j.cma.2013.10.019Search in Google Scholar

51 R. V. Rao, V. J. Savsani, D. P. Vakharia: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Computer-Aided Design 43 (2011), No. 3, pp. 303-315 DOI:10.1016/j.cad.2010.12.01510.1016/j.cad.2010.12.015Search in Google Scholar

52 A. Osyczka, S. Krenich, K. Karas: Optimum design of robot grippers using genetic algorithms, Proc. of the Third World Congress of Structural and Multidisciplinary Optimization, (WCSMO), Buffalo, New York (1999), pp. 241-243Search in Google Scholar

53 A. Trivedi, D. Srinivasan, N. Biswas: An improved unified differential evolution algorithm for constrained optimization problems, Proc. of 2018 IEEE Congress on Evolutionary Computation (2018), pp. 1-10Search in Google Scholar

54 M. Hellwig, H. Beyer: A Matrix Adaptation Evolution Strategy for Constrained Real-Parameter Optimization, Proc. of the IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil (2018), pp. 1-8 DOI:10.1109/CEC.2018.8477950.10.1109/CEC.2018.8477950Search in Google Scholar

55 Z. Fan, Y. Fang, W. Li, Y. Yuan, Z. Wang, X. Bian: LSHADE44 with an Improved epsilon Constraint-Handling Method for Solving Constrained Single-Objective Optimization Problems. In 2018 IEEE Congress on Evolutionary Computation (CEC) (2018, July), pp. 1-8, IEEE10.1109/CEC.2018.8477943Search in Google Scholar

56 İ. Aydoğdu: Cost optimization of reinforced concrete cantilever retaining walls under seismic loading using a biogeography-based optimization algorithm with Levy flights, Engineering Optimization, 49 (2017), No. 3, pp.381-400 DOI:10.1080/0305215X.2016.119183710.1080/0305215X.2016.1191837Search in Google Scholar

57 B. S. Yildiz: Slime mould algorithm and kriging surrogate model-based approach for enhanced crashworthiness of electric vehicles, International Journal of Vehicle Design 83 (2020), No. 1, pp. 54-68 DOI:10.1504/IJVD.2020.11478610.1504/IJVD.2020.114786Search in Google Scholar

58 B. S. Yildiz: Robust design of electric vehicle components using a new hybrid salp swarm algorithm and radial basis function-based approach, International Journal of Vehicle Design 83 (2020), No. 1, pp. 38-53 DOI:10.1504/IJVD.2020.11477910.1504/IJVD.2020.114779Search in Google Scholar

59 H. Abderazek, F. Hamza, A. R. Yildiz, S. M. Sait: Comparative investigation of the moth-flame algorithm and whale optimization algorithm for optimal spur gear design, Materials Testing 63 (2021) 3, pp. 266-271 DOI:10.1515/mt-2020-003910.1515/mt-2020-0039Search in Google Scholar

60 B. S Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait: Comparision of the political optimization algorithm, the Archimedes optimization algorithm and the Levy flight algorithm for design optimization in industry, Materials Testing 63 (2021) 4, pp. 356-359 DOI:10.1515/mt-2020-00510.1515/mt-2020-005Search in Google Scholar

61 B. S Yildiz, V. Patel, N. Pholdee, S. M. Sait, S. Bureerat, A. R. Yildiz: Conceptual comparison of the ecogeography-based algorithm, equilibrium algorithm, marine predators algorithm and slime mold algorithm for optimal product design, Materials Testing, 63 (2021) 4, pp. 336-340 DOI: 10.1515/mt-2020-004910.1515/mt-2020-0049Search in Google Scholar

62 A. R. Yildiz: Designing of optimum vehicle components using new generation optimization methods, Journal of Polytechnic 20 (2017), No. 2, pp. 319-323 DOI:10.2339/2017.20.2 325-3310.2339/2017.20.2325-33Search in Google Scholar

63 B. S Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait: Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm, Expert Systems 38 (3) 2021, e12666 DOI:10.1111/exsy.1266610.1111/exsy.12666Search in Google Scholar

64 A. R. Yildiz, M. U. Erdaş: A new Hybrid Taguchi-salp swarm optimization algorithm for the robust design of real-world engineering problems, Materials Testing 63 (2021), pp. 157-162 DOI: 10.1515/mt-2020-002210.1515/mt-2020-0022Search in Google Scholar

65 A. R. Yildiz, N. Kaya, N. Öztürk, F. Öztürk: Hybrid approach for genetic algorithm and Taguchi’s method based design optimization in the automotive industry, International Journal of Production Research 44 (2006), No. 22, pp. 4897-4914 DOI:10.1080/0020754060061993210.1080/00207540600619932Search in Google Scholar

66 Z. Meng, G. Li, X. Wang, S. M. Sait, A. R. Yildiz: A comparative study of metaheuristic algorithms for reliability-based design optimization problems, Archives of Computational Methods in Engineering 28 (2021), pp. 1853-1869 DOI:10.1007/s11831-020-09443-z10.1007/s11831-020-09443-zSearch in Google Scholar

67 B. Crawford, R. Soto, E. Monfroy, W. Palma, C. Castro, F. Paredes: Parameter tuning of a choice-function based hyperheuristic using particle swarm optimization, Expert Systems with Applications 40 (2013), pp. 1690-1695 DOI:10.1016/j.eswa.2012.09.01310.1016/j.eswa.2012.09.013Search in Google Scholar

68 E. Demirci, A. R. Yıldız: An experimental and numerical investigation of the effects of geometry and spot welds on the crashworthiness of vehicle thin-walled structures, Materials Testing 60 (2018), No. 6, pp. 553-561 DOI:10.3139/120.11118710.3139/120.111187Search in Google Scholar

69 S. Zhang, Z. Ren, C. Li, J. Xuan:A perturbation adaptive pursuit strategy based hyper-heuristic for multi-objective optimization problems. Swarm and Evolutionary Computation 54 (2020), No. 100647 DOI:10.1016/j.swevo.2020.10064710.1016/j.swevo.2020.100647Search in Google Scholar

70 B. S. Yildiz, A. R. Yildiz, E. I. Albak, H. Abderazek, Sadiq M. Sait, S. Bureerat: Butterfly optimization algorithm for optimum shape design of automobile suspension components, Materials Testing 62 (2020), No. 4, pp. 365-370 DOI:10.3139/120.11149210.3139/120.111492Search in Google Scholar

Published Online: 2021-06-30
Published in Print: 2021-06-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany

Downloaded on 9.12.2022 from https://www.degruyter.com/document/doi/10.1515/mt-2020-0092/html
Scroll Up Arrow