Abstract
In this work, a new hybrid optimization algorithm (HWW-NM), which combines the Nelder-Mead local search algorithm with the water wave algorithm, is introduced to solve real-world engineering optimization problems. This paper is one of the first studies in which both the water wave algorithm and the HWW-NM are applied to processing parameters optimization for manufacturing processes. HWW-NM performance is measured using the cantilever beam problem. Additionally, a problem for milling manufacturing optimization is posed and solved to evaluate HWW-NM performance in real-world applications. The results reveal that HWW-NM is an attractive optimization approach for optimizing real-life problems.
About the authors
Dildar Gürses received her Bsc and Msc degrees from the Department of Mechanical Engineering at Uludağ University. She is a PhD candidate at the same university.
Nantiwat Pholdee received his BEng degree (Second Class Honors) in Mechanical Engineering in 2008 and his PhD degree in Mechanical Engineering in 2013 from Khon Kaen University, Khon Kaen, Thailand. His research interests include multidisciplinary design optimization, aircraft design, flight control, evolutionary computation and finite-element analysis.
Sujin Bureerat received his BEng degree in Mechanical Engineering from Khon Kaen University, Khon Kaen, Thailand, in 1992, and his PhD degree in Engineering from Manchester University, Manchester, UK, in 2001. Currently, he is a Professor in the Department of Mechanical Engineering, Khon Kaen University. His research interests include multidisciplinary design optimization, evolutionary computation, aircraft design, finite-element analysis, agricultural machinery, mechanism synthesis, and mechanical vibration.
Dr. Sadiq M. Sait received his Bachelor’s degree in Electronics Engineering from Bangalore University, India, in 1981, and his Master’s and Ph.D. degrees in Electrical Engineering from the King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, in 1983 and 1987, respectively. He is currently a Professor of Computer Engineering and Director of the Center for Communications and IT Research, KFUPM, Dhahran, Saudi Arabia. He is a Senior Member of the IEEE. In 1981, he received the Best Electronic Engineer Award from the Indian Institute of Electrical Engineers, Bengaluru.
Dr. Ali Rıza Yıldız is a Professor in the Department of Automotive Engineering, Bursa Uludağ University, Bursa, Turkey. His research interests are the finite element analysis of automobile components, lightweight design, composite materials, vehicle design, vehicle crashworthiness, shape and topology optimization of vehicle components, meta-heuristic optimization techniques, and sheet metal forming. He has been serving as an Associate Editor for the Journal of Expert Systems, Wiley.
References
1 Y. J. Zheng: Water wave optimization: A new nature-inspired metaheuristic, Computers & Operations Research 55 (2015), pp. 1-11 DOI:10.1016/j.cor.2014.10.00810.1016/j.cor.2014.10.008Search in Google Scholar
2 H. Abderazek, A. R. Yildiz, S. Mirjalili: Comparison of recent optimization algorithms for design optimization of a cam-follower mechanism, Knowledge-Based Systems105 (2020), No. 105237 DOI:10.1016/j.knosys.2019.10523710.1016/j.knosys.2019.105237Search in Google Scholar
3 N. Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait: Seagull optimization algorithm for solving real-world design optimization problems, Materials Testing 62 (2020), pp. 640-644 DOI:10.3139/120.11152910.3139/120.111529Search in Google Scholar
4 B. Aslan, A. R. Yildiz: Optimum design of automobile components using lattice structures for additive manufacturing, Materials Testing 52 (2020), pp. 633-639 DOI:10.3139/120.11152710.3139/120.111527Search in Google Scholar
5 H. Abderazek, A. R. Yildiz, S. M. Sait: Optimal design of planetary gear train for automotive transmissions using advanced meta-heuristics, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 121-136 DOI:10.1504/IJVD.2019.10986210.1504/IJVD.2019.109862Search in Google Scholar
6 N. Panagan, N. Pholdee, K. Wansasueb, S. Bureerat, A. R. Yildiz, S. M. Sait: Comparison of recent algorithms for many-objective optimisation of an automotive floor-frame, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 176-208 DOI:10.1504/IJVD.2019.10986310.1504/IJVD.2019.109863Search in Google Scholar
7 R. Sarangkum, K. Wansasueb, N. Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait: Automated design of aircraft fuselage stiffeners using multiobjective evolutionary optimisation, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 162-175 DOI:10.1504/IJVD.2019.10986410.1504/IJVD.2019.109864Search in Google Scholar
8 C. M. Aye, N. Pholdee, A. R. Yildiz, S. Bureerat, S. M. Sait: Multi-surrogate assisted metaheuristics for crashworthiness optimisation, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 223-240 DOI:10.1504/IJVD.2019.10986610.1504/IJVD.2019.109866Search in Google Scholar
9 E. Demirci, A. R. Yildiz: A new hybrid approach for reliability-based design optimization of structural components, Materials Testing 61(2019), pp. 111-119 DOI:10.3139/120.11129110.3139/120.111291Search in Google Scholar
10 E. Demirci, A. R. Yildiz: An experimental and numerical investigation of the effects of geometry and spot welds on the crashworthiness of vehicle thin-walled structures, Materials Testing 60 (2018), No. 6, pp. 553-561 DOI:10.3139/120.11118710.3139/120.111187Search in Google Scholar
11 A. R. Yildiz, N. Kaya, N. Öztürk, F. Öztürk: Hybrid approach for genetic algorithm and Taguchi’s method based design optimization in the automotive industry, International Journal of Production Research 44 (2006), pp. 4897-4914 DOI:10.1080/0020754060061993210.1080/00207540600619932Search in Google Scholar
12 E. Demirci, A. R. Yildiz: An investigation of the crash performance of magnesium, aluminum and advanced high strength steels and different-cross sections for vehicle thin-walled energy absorbers, Materials Testing 60 (2018), No. 7-8, pp. 661-668 DOI:10.3139/120.11120110.3139/120.111201Search in Google Scholar
13 T. Güler, A. Demirci, A. R. Yildiz, U. Yavuz: Lightweight design of an automobile hinge component using glass fiber polyamide composites, Materials Testing 60 (2018), No. 3, pp. 306-310 DOI:10.3139/120.11115210.3139/120.111152Search in Google Scholar
14 B. S. Yildiz, A. R. Yildiz, N. Pholdee, S. Bureerat, S. M. Sait, V. Patel: The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components, Materials Testing 62 (2020), No. 3, pp. 261-264 DOI:10.3139/120.11147910.3139/120.111479Search in Google Scholar
15 B. S. Yıldız: The spotted hyena optimization algorithm for weight-reduction of automobile brake components, Materials Testing 62 (2020), No. 4, pp. 383-388 DOI:10.3139/120.11149510.3139/120.111495Search in Google Scholar
16 B. S. Yildiz, A. R. Yildiz, E. I. Albak, H. Abderazek, Sadiq M. Sait, S. Bureerat: Butterfly optimization algorithm for optimum shape design of automobile suspension components, Materials Testing 62 (2020), No. 4, pp. 365-370 DOI:10.3139/120.11149210.3139/120.111492Search in Google Scholar
17 E. Kurtuluş, A. R. Yildiz, S. M. Sait, S. Bureerat: A novel hybrid Harris hawks-simulated annealing algorithm and RBF-based metamodel for design optimization of highway guardrails, Materials Testing 62 (2020), No. 3, pp. 251-260 DOI:10.3139/120.11147810.3139/120.111478Search in Google Scholar
18 Z. G. Wang, M. Rahman, Y. S. Wong, J. Sun: Optimization of multi-pass milling using parallel genetic algorithm parallel genetic simulated annealing, International Journal of Machine Tools & Manufacture 45 (2005), No. 15, pp. 1726-1734 DOI:10.1016/j.ijmachtools.2005.03.00910.1016/j.ijmachtools.2005.03.009Search in Google Scholar
19 P. G. Petropoulos: Optimal selection of machining rate variable by geometric programming, International Journal of Production Research 11(1973), No. 4, pp. 305-314 DOI:10.1080/0020754730892998110.1080/00207547308929981Search in Google Scholar
20 G. Boothroyd, P. Rusek: Maximum rate of profit criteria in machining, Journal of Engineering for Industry 98 (1976), No. 1, pp. 217-220 DOI:10.1115/1.343882210.1115/1.3438822Search in Google Scholar
21 S. K. Hati, S. S. Rao: Determination of optimum machining conditions deterministic probabilistic approaches, Journal of Engineering for Industry 98 (1976), No. 1, pp. 354-359 DOI:10.1115/1.343885310.1115/1.3438853Search in Google Scholar
22 K. Iwata, Y. Murotsu, T. Iwatsubo, F. Oba: Optimization of cutting conditions for multipass operations considering probabilistic nature in machining conditions, Journal of Engineering for Industry 99 (1977), No. 1, pp. 211-217 DOI:10.1115/1.343914010.1115/1.3439140Search in Google Scholar
23 B. K. Lambert, A. Walvekar: Optimization of multi pass machining operations, International Journal of Production Research 16 (1978), No. 4, pp. 259-265 DOI:10.1080/0020754780893001810.1080/00207547808930018Search in Google Scholar
24 M. C. Chen, D. M. Tsai: A simulated annealing approach for optimization of multi-pass turning operations, International Journal of Production Research 34 (1996), No. 10, pp. 2803-2825 DOI:10.1080/0020754960890506010.1080/00207549608905060Search in Google Scholar
25 Z. Meng, G. Li, X. Wang, S. M. Sait, A. R. Yildiz: A comparative study of metaheuristic algorithms for reliability-based design optimization problems, Archives of Computational Methods in Engineering 28 (2021), pp.1853-1869 DOI:10.1007/s11831-020-09443-z10.1007/s11831-020-09443-zSearch in Google Scholar
26 A. R. Yildiz, M. U. Erdaş: A new Hybrid Taguchi-salp swarm optimization algorithm for the robust design of real-world engineering problems, Materials Testing 63 (2021), pp.157-162, DOI:10.1515/mt-2020-002210.1515/mt-2020-0022Search in Google Scholar
27 A. R. Yildiz: Designing of optimum vehicle components using new generation optimization methods, Journal of Polytechnic 20 (2017), No. 2, pp. 319-323 DOI:10.2339/2017.20.2 325-3310.2339/2017.20.2Search in Google Scholar
28 B. S Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait: Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm, Expert Systems 38 (3) 2021, e12666 DOI:10.1111/exsy.1266610.1111/exsy.12666Search in Google Scholar
29 B. S Yildiz, V. Patel, N. Pholdee, S. M. Sait, S. Bureerat, A.R. Yildiz,: Conceptual comparison of the ecogeography-based algorithm, equilibrium algorithm, marine predators algorithm and slime mold algorithm for optimal product design, Materials Testing 63 (2021) 4 DOI:10.1515/mt-2020-004910.1515/mt-2020-0049Search in Google Scholar
30 H. Abderazek, F. Hamza, A. R. Yildiz, S. M. Sait: Comparative investigation of the moth-flame algorithm and whale optimization algorithm for optimal spur gear design, Materials Testing 63 (2021) 3 DOI:10.1515/mt-2020-003910.1515/mt-2020-0039Search in Google Scholar
31 B. S Yildiz, N. Pholdee, S. Bureerat, A. R. Yildiz, S. M. Sait: Comparision of the political optimization algorithm, the Archimedes optimization algorithm and the Levy flight algorithm for design optimization in industry, Materials Testing 63 (2021) 4 DOI:10.1515/mt-2020-00510.1515/mt-2020-005Search in Google Scholar
32 B. S. Yildiz: Robust design of electric vehicle components using a new hybrid salp swarm algorithm and radial basis function-based approach, International Journal of Vehicle Design 83 (2020), No. 1, pp. 38-53 DOI:10.1504/IJVD.2020.11477910.1504/IJVD.2020.114779Search in Google Scholar
33 B. S. Yildiz: Slime mould algorithm and kriging surrogate model-based approach for enhanced crashworthiness of electric vehicles, International Journal of Vehicle Design 83 (2020), No. 1, pp. 54-68 DOI:10.1504/IJVD.2020.11478610.1504/IJVD.2020.114786Search in Google Scholar
34 A. R. Yildiz, U. A. Kılıçarpa, E. Demirci: Topography and topology optimization of diesel engine components for light-weight design in the automotive industry, Materials Testing 61 (2019), No. 1, pp. 27-34 DOI:10.3139/120.11127710.3139/120.111277Search in Google Scholar
35 A. Karaduman, B. S. Yıldız, A. R. Yıldız: Experimental and numerical fatigue-based design optimisation of clutch diaphragm spring in the automotive industry, International Journal of Vehicle Design 80 (2020), No. 1-40, pp. 330-345 DOI:10.1504/IJVD.2019.10987510.1504/IJVD.2019.109875Search in Google Scholar
36 N. Panagant, S. Bureerat: Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution, Engineering Optimization 50 (2018), No. 10, pp. 1645-1661 DOI:10.1080/0305215X.2017.141740010.1080/0305215X.2017.1417400Search in Google Scholar
37 H. Özkaya, M. Yildiz, A. R. Yildiz, S. Bureerat, B. S. Yildiz, Sadiq M. Sait: The equilibrium optimization algorithm and the response surface based metamodel for optimal structural design of vehicle components, Materials Testing 62 (2020), pp. 492-496 DOI:10.3139/120.11150910.3139/120.111509Search in Google Scholar
38 P. Champasak, N .Panagant, N. Pholdee, S. Bureerat, A. R. Yildiz: Self-adaptive many-objective meta-heuristic based on decomposition for many-objective conceptual design of a fixed wing unmanned aerial vehicle, Aerospace Science and Technology 100 (2020), pp. 1-11 DOI:10.1016/j.ast.2020.10578310.1016/j.ast.2020.105783Search in Google Scholar
39 A. R. Yildiz, H. Abderazek, S. Mirjalili: A Comparative Study of Recent Non-traditional Methods for Mechanical Design Optimization, Archives of Computational Methods in Engineering 27 (2020), pp. 1031-1048 DOI:10.1007/s11831-019-09343-x10.1007/s11831-019-09343-xSearch in Google Scholar
40 R. A. Formato: Central force optimization: A new metaheuristic with applications in applied electromagnetics, Progress in Electromagnetics Research 77 (2007), pp. 425-491 DOI:10.2528/PIER0708240310.2528/PIER07082403Search in Google Scholar
41 A. Hatamlou: Black hole: A new heuristic optimization approach for data clustering, Information Sciences 222 (2013), pp. 175-184 DOI:10.1016/j.ins.2012.08.02310.1016/j.ins.2012.08.023Search in Google Scholar
42 A. Kaveh, M. Khayatazad: A new meta-heuristic method: ray optimization, Computers & Structures 112 (2012), pp. 283-294 DOI:10.1016/j.compstruc.2012.09.00310.1016/j.compstruc.2012.09.003Search in Google Scholar
43 S. Mirjalili, S. M. Mirjalili, A. Hatamlou: Multiverse optimizer: a nature-inspired algorithm for global optimization, Neural Computing and Applications 27 (2016), No. 2, pp. 495-513 DOI:10.1007/s00521-015-1870-710.1007/s00521-015-1870-7Search in Google Scholar
44 S. Mirjalili, A. Lewis: The whale optimization algorithm, Advances in Engineering Software 95 (2016), pp. 51-67 DOI:10.1016/j.advengsoft.2016.01.00810.1016/j.advengsoft.2016.01.008Search in Google Scholar
45 S. Saremi, S. Mirjalili, A. Lewis: Grasshopper optimisation algorithm: theory and application, Advances in Engineering Software 105 (2017), pp. 30-47 DOI:10.1016/j.advengsoft.2017.01.00410.1016/j.advengsoft.2017.01.004Search in Google Scholar
46 R. Eberhart, J. Kennedy: A new optimizer using particle swarm theory, MHS’95, Proceedings of the Sixth International Symposium on Micro Machine and Human Science (2015), pp. 39-43 DOI:10.1109/MHS.1995.49421510.1109/MHS.1995.494215Search in Google Scholar
47 S. Mirjalili, S. M. Mirjalili, A. Lewis: Grey wolf optimizer, Advances in Engineering Software 69 (2014), pp. 46-61 DOI:10.1016/j.advengsoft.2013.12.00710.1016/j.advengsoft.2013.12.007Search in Google Scholar
48 S. Mirjalili: Dragonfly algorithm: a new metaheuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications 27 (2016), No. 4, pp. 1053-1073 DOI:10.1007/s00521-015-1920-110.1007/s00521-015-1920-1Search in Google Scholar
49 S. Mirjalili: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-Based Systems 89 (2015), pp. 228-249 DOI:10.1016/j.knosys.2015.07.00610.1016/j.knosys.2015.07.006Search in Google Scholar
50 S. Mirjalili, A. H. Gandomi, S. Z. Mirjalili, S. Saremi, H. Faris, S. M. Mirjalili: Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Advances in Engineering Software 114 (2017), pp. 163-191 DOI:10.1016/j.advengsoft.2017.07.00210.1016/j.advengsoft.2017.07.002Search in Google Scholar
51 S. Mirjalili: The ant lion optimizer, Advances in Engineering Software 83 (2015), pp. 80-98 DOI:10.1016/j.advengsoft.2015.01.01010.1016/j.advengsoft.2015.01.010Search in Google Scholar
52 A. R. Yildiz: A novel hybrid whale nelder mead algorithm for optimization of design and manufacturing problems, International Journal of Advanced Manufacturing Technology 105 (2019), pp. 5091-5104 DOI:10.1007/s00170-019-04532-110.1007/s00170-019-04532-1Search in Google Scholar
53 B. S. Yildiz: The mine blast algorithm for the structural optimization of electrical vehicle components, Materials Testing 62 (2020), No. 5, pp. 497-501 DOI:10.3139/120.11151110.3139/120.111511Search in Google Scholar
54 B. S. Yildiz, A. R. Yildiz: The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components, Materials Testing 61 (2019), pp. 744-748 DOI:10.3139/120.11137910.3139/120.111379Search in Google Scholar
55 A. R. Yildiz, B. S. Yildiz, S. M. Sait, X. Li: The Harris hawks, grasshopper and multi-verse optimization algorithms for the selection of optimal machining parameters in manufacturing operations, Materials Testing 61 (2019), pp. 725-733 DOI:10.3139/120.11137710.3139/120.111377Search in Google Scholar
56 A. R. Yildiz, B. S. Yildiz, S. M. Sait, S. Bureerat, N. Pholdee: A new hybrid Harris hawks Nelder-Mead optimization algorithm for solving design and manufacturing problems, Materials Testing 61 (2019), No. 8, pp. 735-743 DOI:10.3139/120.11137810.3139/120.111378Search in Google Scholar
57 S. Mirjalili: SCA: a sine cosine algorithm for solving optimization problems, Knowledge-Based Systems 96 (2016), pp. 120-133 DOI:10.1016/j.knosys.2015.12.02210.1016/j.knosys.2015.12.022Search in Google Scholar
58 A. H. Gandomi, X.-S. Yang, A. H. Alavi: Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Engineering with Computers 29 (2013), No. 1, pp. 17-35 DOI:10.1007/s00366-011-0241-y10.1007/s00366-011-0241-ySearch in Google Scholar
59 B. S. Yıldız, N. Pholdee, S. Bureerat, A. R. Yildiz, Sadiq M. Sait: Sine-cosine optimization algorithm for the conceptual design of automobile components, Materials Testing 62 (2020), pp. 744-748 DOI:10.3139/120.11154110.3139/120.111541Search in Google Scholar
60 B. S. Yildiz, A. R. Yildiz: Moth-flame optimization algorithm to determine optimal machining parameters in manufacturing processes, Materials Testing 59 (2017), No. 5, pp. 425-429 DOI:10.3139/120.11102410.3139/120.111024Search in Google Scholar
61 A. I. Sonmez, A. Baykasoglu, T. Dereli, I. H. Filiz: Dynamic optimization of multi-pass milling operations via geometric programming, International Journal of Machine Tools and Manufacture 39 (1999), No. 2, pp. 297-332 DOI:10.1016/S0890-6955(98)00027-310.1016/S0890-6955(98)00027-3Search in Google Scholar
62 Z. G. Wang, M. Rahman, Y. S. Wong, J. Sun: Optimization of multi-pass milling using parallel genetic algorithm parallel genetic simulated annealing, International Journal of Machine Tools & Manufacture 45 (2005), No. 15, pp. 1726-1734 DOI:10.1016/j.ijmachtools.2005.03.00910.1016/j.ijmachtools.2005.03.009Search in Google Scholar
63 G. C. Onwubolu: Performance-based optimization of multi-pass face millingoperations using tribes, International Journal of Machine Tools and Manufacture 46 (2006), No. 7-8, pp. 717-727 DOI:10.1016/j.ijmachtools.2005.07.04110.1016/j.ijmachtools.2005.07.041Search in Google Scholar
64 R. V. Rao, P. J. Pawar: Parameter optimization of a multi-pass milling process using nontraditional optimization algorithms, Applied Soft Computing 10 (2010), No. 2, pp. 445-456 DOI:10.1016/j.asoc.2009.08.00710.1016/j.asoc.2009.08.007Search in Google Scholar
65 P. J. Pawar, R. V. Rao: Parameter optimization of machining processes using teaching-learning-based optimization algorithm, The International Journal of Advanced Manufacturing Technology 67 (2013), No. 5-8, pp. 995-1006 DOI:10.1007/s00170-012-4524-210.1007/s00170-012-4524-2Search in Google Scholar
66 J. Huang, L. Gao, X. Li: An effective teaching-learning-based cuckoo search algorithm for parameter optimization problems in structure designing and machining processes, Applied Soft Computing 36 (2015), pp. 349-356 DOI:10.1016/j.asoc.2015.07.03110.1016/j.asoc.2015.07.031Search in Google Scholar
67 H. Abderazek, A. R. Yildiz, S. M. Sait: Mechanical engineering design optimisation using novel adaptive differential evolution algorithm, International Journal of Vehicle Design 80 (2019), No. 2-4, pp. 285-329 DOI:10.1504/IJVD.2019.10987310.1504/IJVD.2019.109873Search in Google Scholar
68 J. A. Nelder, R. Mead, R: A simplex method for function minimization, The Computer Journal 7 (1965), No. 4, pp. 308-313 DOI:10.1093/comjnl/7.4.30810.1093/comjnl/7.4.308Search in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany