Accessible Requires Authentication Published by De Gruyter August 18, 2021

Optimal design of differential mount using nature-inspired optimization methods

Emre İsa Albak, Erol Solmaz and Ferruh Öztürk
From the journal Materials Testing


Structural performance and lightweight design are a significant challenge in the automotive industry. Optimization methods are essential tools to overcome this challenge. Recently, nature-inspired optimization methods have been widely used to find optimum design variables for the weight reduction process. The objective of this study is to investigate the best differential mount design using nature-based optimum design techniques for weight reduction. The performances of the nature-based algorithms are tested using convergence speed, solution quality, and robustness to find the best design outlines. In order to examine the structural performance of the differential mount, static analyses are performed using the finite element method. In the first step of the optimization study, a sampling space is generated by the Latin hypercube sampling method. Then the radial basis function metamodeling technique is used to create the surrogate models. Finally, differential mount optimization is performed by using genetic algorithms (GA), particle swarm optimization (PSO), grey wolf optimizer (GWO), moth-flame optimization (MFO), ant lion optimizer (ALO) and dragonfly algorithm (DA), and the results are compared. All methods except PSO gave good and close results. Considering solution quality, robustness and convergence speed data, the best optimization methods were found to be MFO and ALO. As a result of the optimization, the differential mount weight is reduced by 14.6 wt.-% compared to the initial design.

Emre İsa Albak Hybrid and Electric Vehicle Technology Vocational School of Gemlik Asım Kocabıyık Bursa Uludağ University 16600, Bursa, Turkey


1 N. Singh, L. H. Son, F. Chiclana, J. P. Magnot: A new fusion of salp swarm with sine cosine for optimization of non-linear functions, Engineering with Computers 36 (2020), No. 1, pp. 185-212 DOI:10.1007/s00366-018-00696-8 Search in Google Scholar

2 F. Millo, P. Arya, F. Mallamo: Optimization of automotive diesel engine calibration using genetic algorithm techniques, Energy 158 (2018), No. 1, pp. 807-819 DOI:10.1016/ Search in Google Scholar

3 F. Muyl, L. Dumas, V. Herbert: Hybrid method for aerodynamic shape optimization in automotive industry, Computers and Fluids 33 (2004), No. 5-6, pp. 849-858 DOI:10.1016/j.compfluid.2003.06.007 Search in Google Scholar

4 J. Bai, Y. Li, W. Zuo: Cross-sectional shape optimisation for thin-walled beam crashwor-thiness with stamping constraints using genetic algorithm, International Journal of Vehicle Design 73 (2017), No. 1-3, pp. 76-95 DOI:10.1504/IJVD.2017.082582 Search in Google Scholar

5 M. Kiani, A. R. Yildiz: A comparative study of non-traditional methods for vehicle crashwor-thiness and NVH optimization, Archives of Computational Methods in Engineering 23 (2016), No. 4, pp. 723-734 DOI:10.1007/s11831-015-9155-y Search in Google Scholar

6 Z. Liu, J. Lu, P. Zhu: Lightweight design of automotive composite bumper system using modified particle swarm optimizer, Composite Structures 140 (2016), pp. 630-643 DOI:10.1016/j.compstruct.2015.12.031 Search in Google Scholar

7 Z. Liu, P. Zhu, C. Zhu, W. Chen, R. J. Yang: A modified particle swarm optimisation algorithm and its application in vehicle lightweight design, International Journal of Vehicle Design 73 (2017), No. 1-3, pp. 116-135 DOI: 0.1504/IJVD.2017.082584 Search in Google Scholar

8 B. S. Yıldız, A. R. Yıldız: The Harris hawks optimization algorithm, salp swarm algorithm, grasshopper optimization algorithm and dragonfly algorithm for structural design optimization of vehicle components, Materials Testing 61 (2019), No. 8, pp. 744-748 DOI:10.3139/120.111379 Search in Google Scholar

9 P. K. Gujarathi, V. A. Shah, M. M. Lokhande: Grey wolf algorithm for multidimensional engine optimization of converted plug-in hybrid electric vehicle, Transportation Research Part D: Transport and Environment 63 (2018), pp. 632-648 DOI:10.1016/j.trd.2018.06.003 Search in Google Scholar

10 B. S. Yıldız, A. R. Yıldız: Comparison of grey wolf, whale, water cycle, ant lion and sine-cosine algorithms for the optimization of a vehicle engine connecting rod, Materials Testing 60 (2018), No. 3, pp. 311-315 DOI:10.3139/120.111153 Search in Google Scholar

11 R. Pradhan, S. K. Majhi, J. K. Pradhan, B. B. Pati: Antlion optimizer tuned PID controller based on Bode ideal transfer function for automobile cruise control system, Journal of Industrial Information Integration 9 (2018) pp. 45-52 DOI:10.1016/j.jii.2018.01.002 Search in Google Scholar

12 A. Ishtiaq, S. Ahmed, M. F. Khan, F. Aadil, M. Maqsood, S. Khan: Intelligent clustering using moth flame optimizer for vehicular ad hoc networks, International Journal of Distributed Sensor Networks 15 (2019), No. 1, 1550147718824460 DOI:10.1177/1550147718824460 Search in Google Scholar

13 A. R. Yildiz, H. Abderazek H, S. Mirjalili: A comparative study of recent non-traditional methods for mechanical design optimization, Archives of Computational Methods in Engineering 27 (2020), No. 4, pp. 1031-1048 DOI:10.1007/s11831-019-09343-x Search in Google Scholar

14, accessed March 25, 2021 Search in Google Scholar

15 J. H. Holland: Adaptation in natural and artificial systems, University of Michigan Press, Ann Arbor, Michigan, USA (1975) Search in Google Scholar

16 J. Kennedy, R. Eberhart: Particle swarm optimization, Proceedings IEEE International Conference on Neural Networks, Piscataway, USA (1995), pp. 1942-1948 Search in Google Scholar

17 M. Kiani, M. Motoyama, M. Rais-Rohani, H. Shiozaki: Joint stiffness analysis and optimization as a mechanism for improving the structural design and performance of a vehicle, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 228 (2014), No. 6, pp. 689-700 DOI:10.1177/0954407013516107 Search in Google Scholar

18 S. Mirjalili: The ant lion optimizer, Advances in Engineering Software 83 (2015), pp. 80-98 DOI:10.1016/j.advengsoft.2015.01.010 Search in Google Scholar

19 S. Mirjalili: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications 27 (2016), No. 4, pp. 1053-1073 DOI:10.1007/s00521-015-1920-1 Search in Google Scholar

20 S. Mirjalili, S. M. Mirjalili, A. Lewis: Grey wolf optimizer, Advances in Engineering Software 69 (2014), pp. 46-61 DOI:10.1016/j.advengsoft.2013.12.007 Search in Google Scholar

21 S. Mirjalili: Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowledge-Based Systems 89 (2015), pp. 228-249 DOI:10.1016/j.knosys.2015.07.006 Search in Google Scholar

22 N. C. Xiao, Y. F. Li, Y. Yang, L. Yu, H. Z. Huang: A novel reliability method for structural systems with truncated random variables, Structural Safety 50 (2014), pp. 57-65 DOI:10.1016/j.strusafe.2014.03.006 Search in Google Scholar

23 E. İ. Albak, E. Solmaz, N. Kaya, F. Öztürk: Impact attenuator conceptual design using lightweight materials and meta-modeling technique, Materials Testing 61 (2019), No. 7, pp. 621-626 DOI:10.3139/120.111363 Search in Google Scholar

24 P. Zeng, T. Li, Y. Chen, R. Jimenez, X. Feng, S. Senent: New collocation method for stochastic response surface reliability analyses, Engineering with Computers, 36 (2019), No. 4, pp. 1751-1762 DOI:10.1007/s00366-019-00793-2 Search in Google Scholar

25 E. İ. Alabak: Effects of sections added to multi-cell square tubes on crash performance, Materials Testing 62 (2020), No. 5, pp. 471-479 DOI:10.3139/120.111506 Search in Google Scholar

26 X. G. Song, J. H. Jung, H. J. Son, J. H. Park, K. H. Lee, Y. C. Park: Metamodel-based optimization of a control arm considering strength and durability performance, Computers & Mathematics with Applications 60 (2020), No. 4, pp. 976-980 DOI:10.1016/j.camwa.2010.03.019 Search in Google Scholar

27 T. Zou, S. Mahadevan, Z. Mourelatos, P. Meernik: Reliability analysis of automotive body-door subsystem. Reliability Engineering & System Safety 78 (2002), No. 3, pp. 315-324 DOI:10.1016/S0951-8320(02)00178-3 Search in Google Scholar

28 C. Finnsgard, C. Wanstrom: Factors impacting manual picking on assembly lines: an experiment in the automotive industry. International Journal of Production Research 51 (2013), No. 6, pp. 1789-1798 DOI:10.1080/00207543.2012.712729 Search in Google Scholar

29 S. F. F. Mojtahedi, S. Tabatabaee, M. Ghoroqi, M. S. Tehrani, B. Gordan, M. Ghoroqi: A novel probabilistic simulation approach for forecasting the safety factor of slopes: a case study, Engineering with Computers, 35 (2016), No. 2, pp. 637-646 DOI:10.1007/s00366-018-0623-5 Search in Google Scholar

30 OptiStruct User Guide: Troy, Michigan, USA (2019) Search in Google Scholar

31 K. J. Gaston, J. Bennie, T. W. Davies, J. Hopkins: The ecological impacts of nighttime light pollution: a mechanistic appraisal, Biological reviews 88 (2013), No. 4, pp. 912-927 DOI:10.1111/brv.12036 Search in Google Scholar

32 F. Van Langevelde, R. H. Van Grunsven, E. M. Veenendaal, T. P. M. Fijen: Artificial night lighting inhibits feeding in moths, Biology Letters 13 (2017), No. 3, 20160874 DOI:10.1098/rsbl.2016.0874 Search in Google Scholar

33 Z. Li, L. Duan, T. Chen, Z. Hu Z: Crashworthiness analysis and multi-objective design optimization of a novel lotus root filled tube (LFT), Structural and Multidisciplinary Optimization 57 (2018), No. 2, pp. 865-875DOI:10.1007/s00158-017-1782-5 Search in Google Scholar

Published Online: 2021-08-18
Published in Print: 2021-08-31

© 2021 Walter de Gruyter GmbH, Berlin/Boston, Germany