Accessible Unlicensed Requires Authentication Published by De Gruyter November 30, 2021

Development and properties of austempered low alloyed white cast iron

Mehmet Erdogan, Kemal Davut and Volkan Kilicli
From the journal Materials Testing


This study examined the response of low-alloy white cast iron to austempering heat treatment. In addition, it investigated the microstructure and mechanical properties of austempered low-alloy white cast iron. The low-alloy white cast iron specimens were austenitized at 900 °C, followed by quick quenching into a salt bath at 375 °C, and held there for 15 to 120 minutes for austempering heat treatment. Microstructural features were studied by optical, scanning electron microscopes, and XRD analysis. The mechanical properties were determined by hardness and unnotched Charpy impact toughness tests. As a function of those austempering times, a microstructural map was constructed to show how the transformation products develop, quantitatively. The experimental results showed that the austempering heat treatment produced a microstructure consisting of eutectic carbides + ausferritic structure in low-alloy white cast iron. It can be concluded that the low-alloy white cast iron can be austempered, similar to ductile cast irons. Improved hardness and impact toughness values have been obtained in austempered low-alloy white cast iron.

Volkan Kilicli Department of Metallurgical and Materials Engineering Faculty of Technology Gazi University 06560 Teknikokullar/Ankara Turkey

Funding statement: The authors wish to acknowledge the financial supports of the Gazi University Scientific Project Coordination Unit (Project codes: GÜBAP 07/2012-26 and GÜBAP 07/2012-27). The author is also indebted to Duduoglu Steel Casting Company, Corum, Turkey, for castings of the Y blocks. The authors’ acknowledgments are also extended to the Metal Forming Center of Excellence in Atilim University for providing XRD and SEM facilities.


1 M. Qian, W. Chaochang: Impact-abrasion behavior of low alloy white cast irons, Wear 209 (1997), No. 1, pp. 308-315 DOI:10.1016/S0043-1648(96)07345-010.1016/S0043-1648(96)07345-0Search in Google Scholar

2 V. Kumar: Formation and morphology of M7C3 in low Cr white iron alloyed with Mn and Cu, Journal of Materials Engineering and Performance 12 (2003), No. 1, pp. 14-18 DOI:10.1361/10599490377034341110.1361/105994903770343411Search in Google Scholar

3 A. Bedolla-Jacuinde, S. Aguilar, B. Hernandez: Eutectic modification in a low-chromium white cast iron by a mixture of titanium, rare earths, and bismuth: I. Effect on microstructure, Journal of Materials Engineering and Performance 14 (2005), No. 2, pp. 149-157 DOI:10.1361/1059949052330010.1361/10599490523300Search in Google Scholar

4 Z. Huang, J. Xing, C. Guo: Improving fracture toughness and hardness of Fe2B in high boron white cast iron by chromium addition, Materials and Design 31 (2010), No. 6, pp. 3084-3089 DOI:10.1016/j.matdes.2010.01.00310.1016/j.matdes.2010.01.003Search in Google Scholar

5 L.-M. Chang, L. Lin, J.-H. Liu: Properties of cross-rolled low alloy white cast iron grinding ball, Journal of Iron and Steel Research International 14 (2007), No. 5, pp. 47-51 DOI:10.1016/S1006-706X(07)60073-910.1016/S1006-706X(07)60073-9Search in Google Scholar

6 K. M. Ibrahim, A. A. Nofal: Effect of titanium addition on structure and properties of the as-cast high Cr–Mo white iron, International Journal of Materials Research 103 (2012), No. 3, pp. 362-370 DOI:10.3139/146.11064310.3139/146.110643Search in Google Scholar

7 R. Reda, A. A. Nofal, K. M. Ibrahim, A.-H. A. Hussien: Microstructure–wear performance relationship of hypoeutectic 15 % Cr-2 % Mo white iron, International Journal of Materials Research 103 (2012), No. 7, pp. 838-846 DOI:10.3139/146.11070410.3139/146.110704Search in Google Scholar

8 H. Q. Cheng, H. G. Fu, J. Lin, Y. P. Lei: Effect of Cr content on microstructure and mechanical properties of carbidic austempered ductile iron, Materials Testing 60 (2018), No. 1, pp. 31-39 DOI:10.3139/120.11111410.3139/120.111114Search in Google Scholar

9 T. Teker, I. S. Dalmis, R. Yilmaz: Effect of heat treatment on the wear behavior of GX200Cr13Ni6WMoMn, Materials Testing 61 (2019), No. 5, pp. 441-447 DOI:10.3139/120.11133910.3139/120.111339Search in Google Scholar

10 T. Teker, S. O. Yilmaz: Effect of carbides on the wear resistance of white cast iron alloyed with 12.7 wt.-% Cr and nickel, Materials Testing 62 (2020), No. 8, pp. 788-792 DOI:10.3139/120.11155210.3139/120.111552Search in Google Scholar

11 T. Teker, S. O. Yilmaz, E. Kerkut: Effect of TiBAl inoculation on abrasive wear resistance of high Cr white cast iron Materials Testing 61 (2019), No. 7, pp. 690-694 DOI:10.3139/120.11137310.3139/120.111373Search in Google Scholar

12 L.-M. Chang, J.-H. Liu: Effect of hot deformation on formation and growth of thermal fatigue crack in chromium wear resistant cast iron, Journal of Iron and Steel Research International 13 (2006), No. 1, pp. 36-39 DOI:10.1016/S1006-706X(06)60023-X10.1016/S1006-706X(06)60023-XSearch in Google Scholar

13 X. Gao, Z. Jiang, D. Wei, B. Kosasih: Effect of thermomechanical treatment on sliding wear of high-Cr cast iron with large plastic deformation, Tribology International 92 (2015), pp. 117-125 DOI:10.1016/j.triboint.2015.06.00210.1016/j.triboint.2015.06.002Search in Google Scholar

14 J. Xu, X. Gao, Z. Jiang, D. Wei: A Comparison of hot deformation behavior of high-Cr white cast iron and high-Cr white cast iron/low carbon steel laminate, Steel Research International 87 (2016), No. 6, pp. 780-788 DOI:10.1002/srin.20150023410.1002/srin.201500234Search in Google Scholar

15 J. Wang, W. Guo, H. Sun, H. Li, H. Gou, J. Zhang: Plastic deformation behaviors and hardening mechanism of M7C3 carbide, Materials Science and Engineering A 662 (2016), No., pp. 88-94 DOI:10.1016/j.msea.2016.03.06210.1016/j.msea.2016.03.062Search in Google Scholar

16 R. Elliott: Cast Iron Technology, Butterworth-Heinemann, London, UK (1988) pp. 140-150Search in Google Scholar

17 P. P. Rao, S. K. Putatunda: Influence of micro-structure on fracture toughness of austempered ductile iron, Metallurgical and Materials Transactions A 28 (1997), No. 7, pp. 1457-1470 DOI:10.1007/s11661-997-0208-110.1007/s11661-997-0208-1Search in Google Scholar

18 J. Aranzabal, I. Gutierrez, J. Rodriguez-Ibabe, J. Urcola: Influence of the amount and morphology of retained austenite on the mechanical properties of an austempered ductile iron, Metallurgical and Materials Transactions A 28 (1997), No. 5, pp. 1143-1156 DOI:10.1007/s11661-997-0280-610.1007/s11661-997-0280-6Search in Google Scholar

19 C. Labrecque, M. Gagne: Ductile iron: fifty years of continuous development, Canadian Metallurgical Quarterly 37 (1998), No. 5, pp. 343-378 DOI:10.1179/cmq.1998.37.5.34310.1179/cmq.1998.37.5.343Search in Google Scholar

20 P. P. Rao, S. K. Putatunda: Dependence of fracture toughness of austempered ductile iron on austempering temperature, Metallurgical and Materials Transactions A 29 (1998), No. 12, pp. 3005-3016 DOI:10.1007/s11661-998-0208-910.1007/s11661-998-0208-9Search in Google Scholar

21 F. Klocke, C. Klöpper, D. Lung, C. Essig: Fundamental wear mechanisms when machining austempered ductile iron (ADI), CIRP Annals 56 (2007), No. 1, pp. 73-76 DOI:10.1016/j.cirp.2007.05.02010.1016/j.cirp.2007.05.020Search in Google Scholar

22 V. Kilicli, M. Erdogan: Effect of ausferrite volume fraction and morphology on tensile properties of partially austenitised and austempered ductile irons with dual matrix structures, International Journal of Cast Metals Research 20 (2007), No. 4, pp. 202-214 DOI:10.1179/136404607X25605110.1179/136404607X256051Search in Google Scholar

23 Y. Sahin, M. Erdogan, V. Kilicli: Wear behavior of austempered ductile irons with dual matrix structures, Materials Science and Engineering A 444 (2007), No. 1, pp. 31-38 DOI:10.1016/j.msea.2006.06.07110.1016/j.msea.2006.06.071Search in Google Scholar

24 V. Kilicli, M. Erdogan: The strain-hardening behavior of partially austenitized and the austempered ductile irons with dual matrix structures, Journal of Materials Engineering and Performance 17 (2008), No. 2, pp. 240-249 DOI:10.1007/s11665-007-9143-y10.1007/s11665-007-9143-ySearch in Google Scholar

25 M. Erdogan, V. Kilicli, B. Demir: The influence of the austenite dispersion on phase transformation during the austempering of ductile cast iron having a dual matrix structure, International Journal of Materials Research 99 (2008), No. 7, pp. 751-760 DOI:10.3139/146.10169710.3139/146.101697Search in Google Scholar

26 B. Avishan, S. Yazdani, D. J. Vahid: The influence of depth of cut on the machinability of an alloyed austempered ductile iron, Materials Science and Engineering A 523 (2009), No. 1, pp. 93-98 DOI:10.1016/j.msea.2009.05.04410.1016/j.msea.2009.05.044Search in Google Scholar

27 M. Erdogan, V. Kilicli, B. Demir: Transformation characteristics of ductile iron austempered from intercritical austenitizing temperature ranges, Journal of Materials Science 44 (2009), No. 5, pp. 1394-1403 DOI:10.1007/s10853-006-1415-710.1007/s10853-006-1415-7Search in Google Scholar

28 A. Vadiraj, G. Balachandran, M. Kamaraj, B. Gopalakrishna, K. P. Rao: Studies on mechanical and wear properties of alloyed hypereutectic gray cast irons in the as-cast pearlitic and austempered conditions, Materials & Design 31 (2010), No. 2, pp. 951-955 DOI:10.1016/j.matdes.2009.07.03010.1016/j.matdes.2009.07.030Search in Google Scholar

29 V. Kilicli, M. Erdogan: The nature of the tensile fracture in austempered ductile iron with dual matrix microstructure, Journal of Materials Engineering and Performance 19 (2010), No. 1, pp. 142-149 DOI:10.1007/s11665-009-9386-x10.1007/s11665-009-9386-xSearch in Google Scholar

30 G. Balachandran, A. Vadiraj, M. Kamaraj, E. Kazuya: Mechanical and wear behavior of alloyed gray cast iron in the quenched and tempered and austempered conditions, Materials and Design 32 (2011), No. 7, pp. 4042-4049 DOI:10.1016/j.matdes.2011.03.05410.1016/j.matdes.2011.03.054Search in Google Scholar

31 A. Basso, J. Sikora: Review on production processes and mechanical properties of dual phase austempered ductile iron, International Journal of Metalcasting 6 (2012), No. 1, pp. 7-14 DOI:10.1007/BF0335547310.1007/BF03355473Search in Google Scholar

32 I. Ovali, V. Kilicli, M. Erdogan: Effect of micro-structure on fatigue strength of intercritically austenitized and austempered ductile irons with dual matrix structures, ISIJ International 53 (2013), No. 2, pp. 375-381 DOI:10.2355/isijinternational.53.37510.2355/isijinternational.53.375Search in Google Scholar

33 J. Olawale, K. Oluwasegun: Austempered ductile iron (ADI): A review, Materials Performance and Characterization 5 (2016), No. 1, pp. 289-311 DOI:10.1520/MPC2016005310.1520/MPC20160053Search in Google Scholar

34 E. A. Chiniforush, M. Rahimi, S. Yazdani: Dry sliding wear of Ni alloyed austempered ductile iron, China Foundry 13 (2016), No. 5, pp. 361-367 DOI:10.1007/s41230-016-6072-010.1007/s41230-016-6072-0Search in Google Scholar

35 S. K. Putatunda: Development of austempered ductile cast iron (ADI) with simultaneous high yield strength and fracture toughness by a novel two-step austempering process, Materials Science and Engineering A 315 (2001), No. 1, pp. 70-80 DOI:10.1016/S0921-5093(01)01210-210.1016/S0921-5093(01)01210-2Search in Google Scholar

36 S. Laino, J. A. Sikora, R. C. Dommarco: Development of wear resistant carbidic austempered ductile iron (CADI), Wear 265 (2008), No. 1-2, pp. 1-7 DOI:10.1016/j.wear.2007.08.01310.1016/j.wear.2007.08.013Search in Google Scholar

37 Y. C. Peng, H. J. Jin, J. H. Liu, G. L. Li: Influence of cooling rate on the microstructure and properties of a new wear resistant carbidic austempered ductile iron (CADI), Materials Characterization 72 (2012), pp. 53-58 DOI:10.1016/j.matchar.2012.07.00610.1016/j.matchar.2012.07.006Search in Google Scholar

38 C. F. Han, Q. Q. Wang, Y. F. Sun, J. Li: Effects of molybdenum on the wear resistance and corrosion resistance of carbidic austempered ductile iron, Metallography and Microstructural Analysis 4 (2015), No. 4, pp. 298-304 DOI:10.1007/s13632-015-0215-310.1007/s13632-015-0215-3Search in Google Scholar

39 R. Nan, H. G. Fu, S. Q. Ma, P. H. Yang, J. Lin, X. Y. Guo, Y. P. Lei: Microstructure and properties of Cu-bearing carbidic austempered ductile iron, International Journal of Materials Research 110 (2019), No. 7, pp. 621-635 DOI:10.3139/146.11178710.3139/146.111787Search in Google Scholar

40 D. I. Pedro, R. C. Dommarco: Rolling contact fatigue resistance of carbidic austempered ductile iron (CADI), Wear 418 (2019), pp. 94-101 DOI:10.1016/j.wear.2018.11.00510.1016/j.wear.2018.11.005Search in Google Scholar

41 P. H. Yang, H. G. Fu, R. Nan, X. Y. Guo, J. Lin, Y. P. Lei: Effect of Ti modification on microstructures and properties of carbidic austempered ductile iron, Journal of Materials Engineering and Performance 28 (2019), No. 4, pp. 2335-2347 DOI:10.1007/s11665-019-03986-410.1007/s11665-019-03986-4Search in Google Scholar

42 P. H. Yang, H. G. Fu, X. W. Zhao, J. Lin, Y. P. Lei: Wear behavior of CADI obtained at different austenitizing temperatures, Tribology International 140 (2019), pp. 1-12 DOI:10.1016/j.triboint.2019.10587610.1016/j.triboint.2019.105876Search in Google Scholar

43 P. Sellamuthu, D. G. H. Samuel, D. Dinakaran, V. P. Premkumar, Z. Li, S. Seetharaman: Austempered ductile iron (ADI): Influence of austempering temperature on microstructure, mechanical and wear properties and energy consumption, Metals 8 (2018), No. 1, pp. 53-65 DOI:10.3390/met801005310.3390/met8010053Search in Google Scholar

44 A. S. O. Pimentel, W. L. Guesser, W. J. R. C. da Silva, P. D. Portella, M. Woydt, J. Burbank: Abrasive wear behavior of austempered ductile iron with niobium additions, Wear 440 (2019), pp. 1-8 DOI:10.1016/j.wear.2019.20306510.1016/j.wear.2019.203065Search in Google Scholar

45 B. Wang, G. C. Barber, F. Qiu, Q. Zou, H. Yang: A review: phase transformation and wear mechanisms of single-step and dual-step austempered ductile irons, Journal of Materials Research and Technology 9 (2020), No. 1, pp. 1054-1069 DOI:10.1016/j.jmrt.2019.10.07410.1016/j.jmrt.2019.10.074Search in Google Scholar

46 M. Yalçın, B. Çetİn, K. Davut: Influence of Cu and Ni alloying on the microstructure and mechanical properties of austempered ductile iron castings, Acta Physica Polonica A 135 (2019), No. 4, pp. 829-833 DOI:10.12693/APhysPolA.135.82910.12693/APhysPolA.135.829Search in Google Scholar

47 C. S. Roberts: Effect of carbon on the volume fractions and lattice parameters of retained austenite and martensite, JOM 5 (1953), No. 2, pp. 203-204 DOI:10.1007/BF0339747710.1007/BF03397477Search in Google Scholar

48 T. Kobayashi, H. Yamamoto: Development of high toughness in austempered type ductile cast iron and evaluation of its properties, Metallurgical Transactions A 19 (1988), No. 2, pp. 319-327 DOI:10.1007/BF0265254110.1007/BF02652541Search in Google Scholar

49 A. Hamid Ali, R. Elliott: Austempering of an Mn–Mo–Cu alloyed ductile iron, Part 1 – Austempering kinetics and processing window, Materials Science and Technology 12 (1996), No. 8, pp. 679-690 DOI:10.1179/mst.1996.12.8.67910.1179/mst.1996.12.8.679Search in Google Scholar

50 M. Yescas, H. Bhadeshia, D. MacKay: Estimation of the amount of retained austenite in austempered ductile irons using neural networks, Materials Science and Engineering A 311 (2001), No. 1, pp. 162-173 DOI:10.1016/S0921-5093(01)00913-310.1016/S0921-5093(01)00913-3Search in Google Scholar

Published Online: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston