Accessible Unlicensed Requires Authentication Published by De Gruyter November 30, 2021

Friction welding of high Cr white cast iron to AISI 1030 steel with Ni interlayer

Tanju Teker and Eyyüp Murat Karakurt
From the journal Materials Testing


In this study, the effect of friction time on microstructure and weldability of AISI 1030 steel with nickel interlayer and high chromium white cast iron welded by the friction welding method were investigated experimentally. The weld joints were produced with 2000 rpm rotational speed, under 80 MPa friction pressure, 150 MPa forging pressure, for 8 s forging time and 8, 10 and 12 s friction times. After the friction welding process, the microstructures of the weld interfaces were analyzed by optical microscopy, scanning electron microscopy, energy dispersive spectrometry, elemental mapping and X-ray diffraction analysis. The results were lateron compared theoretically and experimentally. The increasing friction time led to high frictional heat input. The results indicated that friction time plays a vital role on the microstructure and weldability.

Tanju Teker Department of Manufacturing Engineering Faculty of Technology University of Sivas Cumhuriyet 58140, Sivas, Turkey

Funding statement: This work has been supported by Adıyaman University, Scientific Researches Unit [grant number 2016-002]. The authors are grateful to the Scientific Researches Unit for providing financial support.


1 T. Sawai, K. Ogawa, H. Yamaguchi, H. Ochi, Y. Yamamoto, Y. Suga: Evaluation of joint strength of friction welded carbon steel by heat input, Welding International 16 (2002), No. 6, pp. 432-441 DOI:10.1080/0950711020954955610.1080/09507110209549556Search in Google Scholar

2 N. Özdemir: Investigation of the mechanical properties of friction-welded joints between AISI 304 L and AISI 4340 steel as a function rotational speed, Materials Letters 259 (2005), No. 19, pp. 2504-2509 DOI:10.1016/j.matlet.2005.03.03410.1016/j.matlet.2005.03.034Search in Google Scholar

3 R. Paventhan, P. R. Lakshminarayanan, V. Balasubramanian: Fatigue behaviour of friction welded medium carbon steel and austenitic stainless steel dissimilar joints, Materials Design 32 (2011), No. 4, pp. 1888-1894 DOI:10.1016/j.matdes.2010.12.01110.1016/j.matdes.2010.12.011Search in Google Scholar

4 N. Arivazhagan, K. Senthilkumaran, S. Narayanan, K. Devendranath Ramkumar, S. Surendra, S. Prakash: Hot corrosion behavior of friction welded AISI4140 and AISI304 in K2SO-60 % NaCl mixture, Journal of Materials Science and Technology 28 (2012), No. 10, pp. 895-904 DOI:10.1016/S1005-0302(12)60148-010.1016/S1005-0302(12)60148-0Search in Google Scholar

5 R. Damodaram, S. G. S. Raman, K. P. Rao: Microstructure and mechanical properties of friction welded alloy 718, Materials Science Engineering A 560 (2013), pp. 781-786 DOI:10.1016/j.msea.2012.10.03510.1016/j.msea.2012.10.035Search in Google Scholar

6 C. H. Muralimohan, V. Muthupandi, K. Sivaprasad: Properties of friction welding titanium-stainless steel joints with a nickel interlayer, Procedia Materials Science 5 (2014), pp. 1120-1129 DOI:10.1016/j.mspro.2014.07.40610.1016/j.mspro.2014.07.406Search in Google Scholar

7 D. Ananthapadmanaban, V. Seshagiri Rao, N. Abraham, K. P. Rao: A study of mechanical properties of friction welded mild steel to stainless steel joints, Materials Design 30 (2009), No. 7, pp. 2642-2646 DOI:10.1016/j.matdes.2008.10.03010.1016/j.matdes.2008.10.030Search in Google Scholar

8 Y. Matsubara, N. Sasaguri, K. Shimizu, S. K. Yu: Solidification and abrasion wear of white cast irons alloyed with 20 % carbide forming elements, Wear 250 (2001), No. 1-12, pp. 502-510 DOI:10.1016/S0043-1648(01)00599-310.1016/S0043-1648(01)00599-3Search in Google Scholar

9 J. C. Lippold, D. J. Kotecki: Welding metallurgy and weldability of stainless steels, Wiley, New York, USA (2005), pp. 287-307Search in Google Scholar

10 T. Teker: Evaluation of the metallurgical and mechanical properties of friction-welded joints of dissimilar metal combinations AISI2205/ Cu, The International Journal of Advanced Manufacturing Technolog 66 (2013), No. 1-4, pp. 303-310 DOI:10.1007/s00170-012-4325-710.1007/s00170-012-4325-7Search in Google Scholar

11 Z. W. Huang, H. Y. Li, M. Preuss, M. Karadge, P. Bowen, S. Bray, G. Baxter: Inertia friction welding dissimilar nickel-based superalloys alloy 720Li to IN718, Metallurgicall Materials Transactions A 38 (2007), No. 7, pp. 1608-1620 DOI:10.1007/s11661-007-9194-610.1007/s11661-007-9194-6Search in Google Scholar

12 S. Celik, I. Ersozlu: Investigation of the mechanical properties and microstructure of friction welded joints between AISI 4140 and AISI 1050 steels, Materials Design 30 (2009), No. 4, pp. 970-976 DOI:10.1016/j.matdes.2008.06.07010.1016/j.matdes.2008.06.070Search in Google Scholar

13 S. G. Sapate, A. V. RamaRao: Erosive wear behaviour of weld hardfacing high chromium cast irons: Effect of erodent particle, Tribology International 39 (2006), No. 3, pp. 206-212 DOI:10.1016/j.triboint.2004.10.01310.1016/j.triboint.2004.10.013Search in Google Scholar

14 S. D. Meshram, G. M. Reddy: Friction welding of AA6061 to AISI 4340 using silver interlayer, Defence Technology 11 (2015), No. 3, pp. 292-298 DOI:10.1016/j.dt.2015.05.00710.1016/j.dt.2015.05.007Search in Google Scholar

15 K. Gao, X. Qin, Z. Wang, S. Zhu: Effect of spot continual induction hardening on the microstructure of steels: Comparison between AISI 1045 and 5140 steels, Materials Science Engineering A 651 (2016), pp. 535-547 DOI:10.1016/j.msea.2015.11.01210.1016/j.msea.2015.11.012Search in Google Scholar

16 X. Li, J. Li, F. Jin, J. Xiong, F. Zhang .: Effect of rotation speed on friction behavior of rotary friction welding of AA6061-T6 aluminum alloy, Welding in the World 62 (2018), pp. 923-930 DOI:10.1007/s40194-018-0601-y10.1007/s40194-018-0601-ySearch in Google Scholar

17 S. Ozan: Torsional behavior of AISI 420/AISI 4340 steel friction welds, Materials Testing 56 (2014), No. 10, pp. 891-896 DOI:10.3139/120.11064810.3139/120.110648Search in Google Scholar

18 T. Teker, S. O. Yılmaz, E. M Karakurt: Effect of different rotational speed on mechanical and metallurgical characterization of friction welded dissimilar steels, Materials Testing 60 (2018), No. 2, pp. 135-141 DOI:10.3139/120.11113510.3139/120.111135Search in Google Scholar

19 C. H. Muralimohan, M. Ashfaq, R. Ashiri, V. Muthupandi, K. Sivaprasad: Analysis and characterization of the role of Ni interlayer in the friction welding of titanium and 304 austenitic stainless steel, Metallurgicall Materials Transactions A 47 (2016), No. 1, pp. 347-359 DOI:10.1007/s11661-015-3210-z10.1007/s11661-015-3210-zSearch in Google Scholar

20 S. Sam, S. Kundu, S, Chatterjee: Diffusion bonding of titanium alloy to micro-duplex stainless steel using a nickel alloy interlayer: Interface microstructure and strength properties, Materials Design 40 (2012), pp. 237-244 DOI:10.1016/j.matdes.2012.02.05810.1016/j.matdes.2012.02.058Search in Google Scholar

21 A. Handa, V. Chawla: Investigation of mechanical properties of friction-welded AISI 304 with AISI 1021 dissimilar steels, The International Journal of Advanced Manufacturing Technology 75 (2014), No. 9-12, pp. 1493-1500 DOI:10.1007/s00170-014-6238-010.1007/s00170-014-6238-0Search in Google Scholar

22 S. Senthil Murugan, A. Nourul Haq, P. Sathiya: Effect of welding parameters on the micro-structure and mechanical properties of the friction-welded dissimilar joints of AA6063 alloy and faying surface-tapered AISI304 L alloy, Welding in the World 64 (2020), pp. 483-499 DOI:10.1007/s40194-020-00846-x10.1007/s40194-020-00846-xSearch in Google Scholar

23 Y. Liu, H. Zhao, Y. Peng, X. Ma: Microstructure and tensile strength of aluminum/stainless steel joint welded by inertia friction and continuous drive friction, Welding in the World 64 (2020), pp. 1799-1809 DOI:10.1007/s40194-020-00960-w10.1007/s40194-020-00960-wSearch in Google Scholar

Published Online: 2021-11-30

© 2021 Walter de Gruyter GmbH, Berlin/Boston