Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access February 18, 2015

Transport characteristics of focused beam deposited nanostructures

Ana Ballestar and Pablo Esquinazi
From the journal Nanofabrication

Abstract

We review the transport properties of different nanostructures produced by ion- and electron-beam deposition, as prepared as well as after certain treatments. In general, the available literature indicates that the transport properties are determined by conduction processes typical for disordered metallic grains embedded in a carbon-rich matrix, including intergrain tunneling and variable range hopping mechanisms. Special emphasis is given to the superconducting behavior found in certain Tungsten-Carbide nanostructures that, in a certain field and temperature range, is compatible with that of granular superconductivity. This granular superconductivity leads to phenomena like magnetic field oscillations as well as anomalous hysteresis loops in the magnetoresistance.

References

[1] Van Dorp W. F., Hagen C. W., A critical literature review of focused electron beam induced deposition, J. App. Phys., 2008, 104, 08130. 10.1063/1.2977587Search in Google Scholar

[2] Utke I., Hoffmann P., Melngailis J., Gas-assisted focused electron beam and ion beam processing and fabrication, Journal of Vacuum Science & Technology B, 2008, 26, 1197-1276. 10.1116/1.2955728Search in Google Scholar

[3] Gabureac M., Bernau L., Utke I., Boero G., Granular CoC nano-Hall sensors by focused-beam-induced deposition, Nanotechnology, 2010, 21, 115503. 10.1088/0957-4484/21/11/115503Search in Google Scholar PubMed

[4] Dhakal P., McMahon G., Shepard S., Kirkpatrick T., Oh J. I., Naughton M. J., Direct-write, focused ion beam-deposited, 7 K superconducting C-Ga-O nanowires, Appl. Phys. Lett., 2010, 96, 262511. 10.1063/1.3458863Search in Google Scholar

[5] Weirich P. M., Schwalb C. H., Winhold M., Huth M., Superconductivity in the system MoxCyGazOδ prepared by focused ion beam induced deposition, Journal of Applied Physics, 2014, 115, 174315. 10.1063/1.4874657Search in Google Scholar

[6] De Teresa J. M., Córdoba R., Fernández-Pacheco A., Montero O., Strichovanec P., Ibarra M. R., Origin of the Difference in the Resistivity of As-Grown Focused-Ion- and Focused-Electron-Beam-Induced Pt Nanodeposits, Journal of Nanomaterials 2009, 936863. 10.1155/2009/936863Search in Google Scholar

[7] Mott N. F., Davis E. A., Electronic Processes in Non-Crystalline Materials, Clarendon Press, Oxford, UK, 1979. Search in Google Scholar

[8] Möbius A., Frenzel C., Thielsch R., Rosenbaum R., Adkins C. J., Schreiber M., Bauer H.-D., Grötzschel R., Hoffmann V., Krieg T., et al., Metal-insulator transition in amorphous Si1-xNix: evidence for Mott‘s minimum metallic conductivity, Phys. Rev. B, 1999, 60, 14209-14223. 10.1103/PhysRevB.60.14209Search in Google Scholar

[9] Arena C., Kleinsorge B., Robertson J., Milne W. I., Welland M. E., Hopping conductivity in disordered systems, App. Phys., 1999, 85, 1609-1615. 10.1063/1.369293Search in Google Scholar

[10] Prasad V., Magnetotransport in the amorphous carbon films near the metal-insulator transition, Solid State Communications, 2008, 145, 186-191. 10.1016/j.ssc.2007.10.027Search in Google Scholar

[11] Lin J. F., Bird J. P., Rotkina L., Sergeev A., Mitin U., Large effects due to electron-phonon-impurity interference in the resistivity of Pt/C-Ga composite nanowires, App. Phys. Lett., 2004, 84, 3828-3830. 10.1063/1.1745108Search in Google Scholar

[12] Lin J. F., Bird J. P., Rotkina L., Bennett P. A., Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects, App. Phys. Lett., 2003, 82, 802-804. 10.1063/1.1541940Search in Google Scholar

[13] Lin J. F., Bird J. P., Rotkina L., Low-temperature decoherence in disordered Pt nanowires, Physica E, 2003, 19, 112-116. 10.1016/S1386-9477(03)00317-5Search in Google Scholar

[14] Lin J. F., Bird J. P., Recent experimental studies of electron dephasing in metal and semiconductor mesoscopic structures, J. Phys. Condens. Matter, 2002, 14, 501-596. 10.1088/0953-8984/14/18/201Search in Google Scholar

[15] Echternach P. M., Gershenson M. E., Bozler H. M., Bogdanov A. L., Nilsson B., Temperature dependence of the resistance of one-dimensional metal films with dominant Nyquist phase breaking, Phys. Rev. B, 1994, 50, 5748-5751. 10.1103/PhysRevB.50.5748Search in Google Scholar PubMed

[16] Barzola-Quiquia J., Schulze S., Esquinazi P., Transport properties and atomic structure of ion-beam-deposited W, Pd and Pt nanostructures, Nanotechnology, 2009, 20, 165704. 10.1088/0957-4484/20/16/165704Search in Google Scholar PubMed

[17] Wakaya F., Tsukatani Y., Yamasaki N., Murakami K., Abo S., Takai M., Transport Properties of Beam-Deposited Pt Nanowires, J. Phys.: Conference Series, 2006, 38, 120-215. 10.1088/1742-6596/38/1/030Search in Google Scholar

[18] Peñate-Quesada L., Mitra J., Dawson P., Non-linear electronic transport in Pt nanowires deposited by focused ion beam, Nanotechnology, 2007,18, 215203. 10.1088/0957-4484/18/21/215203Search in Google Scholar

[19] Liao Z. M., Xu J., Zhang X. Z., Yu D. P., The relationship between quantum transport and microstructure evolution in carbon-sheathed Pt granular metal nanowires, Nanotechnology, 2008, 19, 305402. 10.1088/0957-4484/19/30/305402Search in Google Scholar PubMed

[20] Fernández-Pacheco A., De Teresa J. M., Córdoba R., Ibarra M. R., Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition, Phys. Rev. B, 2009, 79, 174204. 10.1103/PhysRevB.79.174204Search in Google Scholar

[21] Glazman L. I. , Matveev K. A., Inelastic resonant tunneling of electrons through a potential barrier, Sov. Phys. JETP, 1988, 67, 163. Search in Google Scholar

[22] Marzi G. D., Iacopino D., Quinn A. J., Redmonda G., Probing intrinsic transport properties of single metal nanowires: Direct-write contact formation using a focused ion beam, J. App. Phys., 2004, 96, 3458-3462. 10.1063/1.1779972Search in Google Scholar

[23] Dynes R. C., Garno J. P., Metal-Insulator Transition in Granular Aluminum, Phys. Rev. Lett., 1981, 46, 137-140. 10.1103/PhysRevLett.46.137Search in Google Scholar

[24] Ravindranath V., Rao M. S. R., Rangarajan G., Lu Y., Klein J., Klingeler R., Uhlenbruck S., Büchner B., Gross R., Magnetotransport studies and mechanism of Ho- and Y-doped La0.7Ca0.3MnO3, Phys. Rev. B, 2011, 63, 184434-184441. 10.1103/PhysRevB.63.184434Search in Google Scholar

[25] Shafarman W. N., Koon D. W., Castner T. G., DC conductivity of arsenic-doped silicon near the metal-insulator transition, Phys. Rev. B, 1989, 40, 1216-1231. 10.1103/PhysRevB.40.1216Search in Google Scholar PubMed

[26] Delahaye J., Brison J. P., Berger C., Evidence for Variable Range Hopping Conductivity in the Ordered Quasicrystal i-AlPdRe, Phys. Rev. Lett., 1998, 81, 4204-4207. 10.1103/PhysRevLett.81.4204Search in Google Scholar

[27] Anderson P. W., Absence of Diffusion in Certain Random Lattices, Phys. Rev., 1958, 109, 1492-1505. 10.1103/PhysRev.109.1492Search in Google Scholar

[28] Langford R. M., Wang T.-X., Ozkaya D., Reducing the resistivity of electron and ion beam assisted deposited Pt, Microelectronic Engineering, 2007, 84, 784-788. 10.1016/j.mee.2007.01.055Search in Google Scholar

[29] McLachlan I., Rosenbaum R., Albers A., Eytan G., Grammatica N., Pickup J., Zaken E.,The temperature and volume fraction dependence of the resistivity of granular Al-Ge near the percolation threshold, J. Phys. Condens. Matter., 1993, 5, 4829. Search in Google Scholar

[30] Sharma S. N., Shivaprasad S. M., Kohli S., Rastogi A., Substrate temperature dependence of electrical conduction in nanocrystalline CdTe:TiO2 sputtered films, Pure Appl. Chem., 2002, 74, 1739-1749. 10.1351/pac200274091739Search in Google Scholar

[31] Stiller M., Barzola-Quiquia J., Lorite I., Esquinazi P., Kirchgeorg R., Albu S., Schmuki P., Transport properties of single TiO2 nanotubes, Appl. Phys. Lett., 2013, 103, 173108. 10.1063/1.4826640Search in Google Scholar

[32] Lee P. A., Ramakrishnan T. V., Disordered electronic systems, Rev. Mod. Phys., 1985, 57, 287-337. 10.1103/RevModPhys.57.287Search in Google Scholar

[33] Liao Z. M., Xu J., Song Y. P., Zhang Y., Xing Y. J., Yu D. P., Quantum interference effect in single Pt(Ga)/C nanowire, Appl. Phys. Lett., 2005, 87, 182112. 10.1063/1.2125108Search in Google Scholar

[34] Rotkina L., Oh S., Eckstein J. N., Rotkin S. V., Logarithmic behavior of the conductivity of electron-beam deposited granular Pt/C nanowires, Phys. Rev. B, 2005, 72, 233407. 10.1103/PhysRevB.72.233407Search in Google Scholar

[35] Altland A., Glazman L. I., Kamenev A., Electron Transport in Granular Metals, Phys. Rev. Lett., 2004, 92, 026801. 10.1103/PhysRevLett.92.026801Search in Google Scholar PubMed

[36] Feigel’man M. V., Ioselevich A. S., Skvortsov M. A., Quantum Percolation in Granular Metals, Phys. Rev. Lett., 2004, 93, 136403. 10.1103/PhysRevLett.93.136403Search in Google Scholar PubMed

[37] Blanter Y. M., Vinokur V. M., Glazman L. I., Weak localization in metallic granular media, Phys. Rev. B, 2006, 73, 165322. 10.1103/PhysRevB.73.165322Search in Google Scholar

[38] Spoddig D., Schindler K., Rödiger P., Barzola-Quiquia J., Fritsch K., Mulders H., Esquinazi P., Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope, Nanotechnology, 2007 18, 495202. 10.1088/0957-4484/18/49/495202Search in Google Scholar PubMed

[39] Efros A. L., Shklovskii B. I., Coulomb gap and low temperature conductivity of disordered systems, J. Phys. C: Solid State Phys., 1975, 8, L49. 10.1088/0022-3719/8/4/003Search in Google Scholar

[40] Shedd G. M., Lezec H., Dubner A. D., Melngailis J., Focused ion beam induced deposition of gold, App. Phys. Lett., 1986, 49, 1584-1586. 10.1063/1.97287Search in Google Scholar

[41] Fransson J., Lin J.-F., Rotkina L., Bird J. P., Bennett P. A., Signatures of bandlike tunneling in granular nanowires, Phys. Rev. B, 2005, 72, 113411. 10.1103/PhysRevB.72.113411Search in Google Scholar

[42] Aladashvili D. I., Adamiya Z. A., Lavdovskii K. G., Levin E. I., Shklovskii B. I., Negative differential resistance in the hopping conductivity region in silicon, JETP Letters, 1988, 47, 466-469. Search in Google Scholar

[43] Mel’nikov A. P., Gurvich Y. A., Shestakov L. N., Gershenzon E. M., Magnetic field effects on the nonohmic impurity conduction of uncompensated crystalline silicon, JETP Letters, 2001, 73, 44-47. 10.1134/1.1355405Search in Google Scholar

[44] Tsukatani Y., Yamasaki N., Murakami K., Wakaya F., Takai M., Transport Properties of Pt Nanowires Fabricated by Beam-Induced Deposition, Jpn. J. Appl. Phys., 2005, 44, 5683-5686. 10.1143/JJAP.44.5683Search in Google Scholar

[45] Rotkina L., Lin J. F., Bird J. P., Nonlinear current-voltage characteristics of Pt nanowires and nanowire transistors fabricated by electron-beam deposition, App. Phys. Lett., 2003, 83, 4426. Search in Google Scholar

[46] Botman A., Mulders J. J. L., Hagen C. W., Creating pure nanostructures from electron-beam-induced deposition using purification techniques: a technology perspective, Nanotechnology, 2009, 20, 372001. 10.1088/0957-4484/20/37/372001Search in Google Scholar PubMed

[47] Fernández-Pacheco A., De Teresa J. M., Córdoba R., Ibarra M. R., Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition, J. Phys. D: Appl. Phys., 2009, 42, 055005. 10.1088/0022-3727/42/5/055005Search in Google Scholar

[48] Kötzler J., Gil W., Anomalous Hall resistivity of cobalt films: Evidence for the intrinsic spin-orbit effect, Phys. Rev. B, 2005, 72, 060412. 10.1103/PhysRevB.72.060412Search in Google Scholar

[49] Leven B. , Dumpich G., Resistance behavior and magnetization reversal analysis of individual Co nanowires, Phys. Rev. B, 2005, 71, 064411. 10.1103/PhysRevB.71.064411Search in Google Scholar

[50] Lavrijsen R., Córdoba R., Schoenaker F. J., Ellis T. H., Barcones B., Kohlhepp J. T., Swagten H. J. M., Koopmans B., De Teresa J. M., Magén C., et al, Fe:O:C grown by focused-electron-beam induced deposition: magnetic and electric properties, Nanotechnology, 2011, 22, 025302. 10.1088/0957-4484/22/2/025302Search in Google Scholar PubMed

[51] Córdoba R., Lavrijsen R., Fernández-Pacheco A., Ibarra M. R., Schoenaker F., Ellis T., Barcones-Campo B., Kohlhepp J. T., Swagten H. J. M., Koopmans B., et al., , Giant anomalous Hall effect in Fe-based microwires grown by focused-electron-beam-induced deposition, J. Phys. D: Appl. Phys., 2012, 45, 035001. 10.1088/0022-3727/45/3/035001Search in Google Scholar

[52] Porrati F., Sachser R., Walz M. M., Vollnhals F., Steinrück H. P., Marbach H., Huth M., Magnetotransport properties of iron microwires fabricated by focused electron beam induced autocatalytic growth, J. Phys. D: Appl. Phys., 2011, 44, 425001. 10.1088/0022-3727/44/42/425001Search in Google Scholar

[53] Córdoba R., Sesé J., De Teresa J. M., Ibarra M. R., High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current, Microelectron. Eng., 2010, 87, 1550-1553. 10.1016/j.mee.2009.11.027Search in Google Scholar

[54] Ziese M., Extrinsic magnetotransport phenomena in ferromagnetic oxides, Rep. Prog. Phys., 2002, 65, 143-249. 10.1088/0034-4885/65/2/202Search in Google Scholar

[55] Sadki E. S., Ooi S., Hirata K., Focused-ion-beam-induced deposition of superconducting nanowires, Appl. Phys. Lett., 2004, 85, 6206. Search in Google Scholar

[56] Li Y., Sinitskii A., Tour J., Electronic two-terminal bistable graphitic memories, Nature Mater., 2008, 7, 966-971. 10.1038/nmat2331Search in Google Scholar PubMed

[57] Luxmoore I. J., Ross I., Cullis A., Fry P., Orr J., Buckle P., Jefferson J., Low temperature electrical characterization of tungsten nano-wires fabricated by electron and ion beam induced chemical vapor deposition, Thin Solid Films, 2007, 515, 6791-6797. 10.1016/j.tsf.2007.02.029Search in Google Scholar

[58] Willens R. H., Buehler E., The superconductivity of the monocarbides of Tungsten and Molybdenum, Appl. Phys. Lett., 1965, 7, 25. 10.1063/1.1754239Search in Google Scholar

[59] Dai J., Onomitsu K., Kometani R., Krockenberger Y., Yamaguchi H., Ishihara S., Warisawa S., Superconductivity in Tungsten-Carbide Nanowires Deposited from the Mixtures of W(CO)6 and C14H10, Jpn. J. Appl. Phys., 2013, 52, 075001. 10.7567/JJAP.52.075001Search in Google Scholar

[60] Barzola-Quiquia J., Dusari S., Chiliotte C., Esquinazi P., Andreev reflection and granular superconductivity features observed in mesoscopic samples using amorphous tungsten carbide superconductors, J. Supercond. Nov. Magn., 2011, 24, 463-469. 10.1007/s10948-010-0973-8Search in Google Scholar

[61] Guillamón I., Suderow H., Vieira S., Fernández-Pacheco A., Sesé J., Córdoba R., De Teresa J. M., Ibarra M. R., Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam, New J. of Phys., 2008, 10, 093005. 10.1088/1367-2630/10/9/093005Search in Google Scholar

[62] Rödiger P., Esquinazi P., García N., Andreev Oscillations in Normal-Superconducting-Normal Nanostructures, J. Supercond. Nov. Magn., 2009, 22, 331-335. 10.1007/s10948-008-0439-4Search in Google Scholar

[63] Esquinazi P., García N., Barzola-Quiquia J., Rödiger P., Schindler K., Yao J.-L., Ziese M., ndications for intrinsic superconductivity in highly oriented pyrolytic graphite, Phys. Rev. B, 2008, 78, 134516. 10.1103/PhysRevB.78.134516Search in Google Scholar

[64] Dusari S., Barzola-Quiquia J., Esquinazi P., Superconducting Behavior of Interfaces in Graphite: Transport Measurements of Micro-constrictions, J. Supercond. Nov. Magn., 2011, 24, 401-405. 10.1007/s10948-010-0947-xSearch in Google Scholar

[65] Andreev A. F., The Thermal Conductivity of the Intermediate State in Superconductors, Sov. Phys. JETP, 1964, 19, 1228. Search in Google Scholar

[66] Blonder G. E., Tinkham M., Klapwijk T. M., Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion, Phys. Rev. B, 1982, 25, 4515. Search in Google Scholar

[67] Garcia N., Flores F., Guinea F., Theory of tunneling in metal-superconducto devices: Supercurrents in the superconductor gap at zero temperatures, J. Vac. Sci. Technol. A, 1988, 6, 323-326. 10.1116/1.575445Search in Google Scholar

[68] Gerber A., Deutscher G., Ac-to-dc Conversion and Aharonov-Bohm Effect in Percolating Superconducting Films, Phys. Rev. Lett., 1990, 64, 1585. Search in Google Scholar

[69] Berdnorz J. G., Müller K. A., Possible high Tc superconductivity in the Ba-La-Cu-O system Z. Phys. B, 1986, 64, 189-193. 10.1007/BF01303701Search in Google Scholar

[70] Shapira Y. , Deutscher G., Semiconductor-superconductor transition in granular Al-Ge, Phys. Rev. B, 1983, 27, 4463-4466. 10.1103/PhysRevB.27.4463Search in Google Scholar

[71] Clem J. R., Granular and superconducting-glass properties of the high-temperature superconductors, Physica C, 1988, 50, 153-155. 10.1016/0921-4534(88)90491-1Search in Google Scholar

[72] Senoussi S., Aguillon C., Hadjoudj S., The contribution of the intergrain currents to the low field hysteresis cycle of granular superconductors and the connection with the micro- and macrostructures, Physica C , 1991, 175, 215-225. 10.1016/0921-4534(91)90255-WSearch in Google Scholar

[73] Ji L., Rzchowski M. S., Anand N., Thinkam M., Magnetic-field-dependent surface resistance and two-level critical-state model for granular superconductors, Phys. Rev. B, 1993, 47, 470-483. 10.1103/PhysRevB.47.470Search in Google Scholar

[74] Kopelevich Y., dos Santos C., Moehlecke S., Machado A., Current-Induced Superconductor-Insulator Transition in Granular High-Tc Superconductors, 2001, arXiv:0108311. 10.1016/S0921-4534(00)00776-0Search in Google Scholar

[75] Felner I., Galstyan E., Lorenz B., Cao D., Wang Y. S., Xue Y. Y., Chu C. W., Magnetoresistance hysteresis and critical current density in granular RuSr2Gd2-xCexCu2O10-δ, Phys. Rev. B, 2005, 67, 134506. 10.1103/PhysRevB.67.134506Search in Google Scholar

[76] Balaev D. A., Gokhfeld D. M., Dubrovski A. A., Popkov S. I., Shaikhutdinov K., Petrov M. I., Magnetoresistance hysteresis in granular HTSCs as a manifestation of the magnetic flux trapped by superconducting grains in YBCO + CuO composites, Journal of Experimental and Theoretical Physics, 2007, 105, 1174-1183. 10.1134/S1063776107120084Search in Google Scholar

Published Online: 2015-2-18

© 2015 Ana Ballestar, Pablo Esquinazi

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow