Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 6, 2015

Patterning of Quantum Dots by Dip-Pen and Polymer Pen Nanolithography

  • Soma Biswas , Falko Brinkmann , Michael Hirtz and Harald Fuchs
From the journal Nanofabrication

Abstract

We present a direct way of patterning CdSe/ ZnS quantum dots by dip-pen nanolithography and polymer pen lithography. Mixtures of cholesterol and phospholipid 1,2-dioleoyl-sn-glycero-3 phosphocholine serve as biocompatible carrier inks to facilitate the transfer of quantum dots from the tips to the surface during lithography. While dip-pen nanolithography of quantum dots can be used to achieve higher resolution and smaller pattern features (approximately 1 μm), polymer pen lithography is able to address intermediate pattern scales in the low micrometre range. This allows us to combine the advantages of micro contact printing in large area and massive parallel patterning, with the added flexibility in pattern design inherent in the DPN technique.

References

[1] Singh M., Haverinen H.M., Dhagat P., Jabbour G.E., Inkjet Printing - Process and Its Applications, Adv. Mater., 2010, 22, 673–685. 10.1002/adma.200901141Search in Google Scholar PubMed

[2] Kumar A., Whitesides G.M., Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching, Appl. Phys. Lett., 1993, 63, 2002-2004. 10.1063/1.110628Search in Google Scholar

[3] Piner R.D., Zhu J., Xu F., Hong S.H., Mirkin C.A., “Dip-Pen” Nanolithography, Science, 1999, 283, 661–663. 10.1126/science.283.5402.661Search in Google Scholar PubMed

[4] Huo F., Zheng Z., Zheng G., Giam L.R., Zhang H., Mirkin C.A., Polymer Pen Lithography, Science, 2008, 321, 1658–1660. 10.1126/science.1162193Search in Google Scholar PubMed PubMed Central

[5] Barbulovic-Nad I., Lucente M., Sun Y., Zhang M., Wheeler A.R., Bussmann M., Bio-Microarray Fabrication Techniques - A Review, Crit. Rev. Biotechnol. 2006, 26, 237–259. Search in Google Scholar

[6] Tan C.P., Cipriany B.R., Lin D.M., Craighead H.G., Nanoscale Resolution, Multicomponent Biomolecular Arrays Generated By Aligned Printing With Parylene Peel-Off, Nano Lett., 2010, 10, 719–725. 10.1021/nl903968sSearch in Google Scholar PubMed PubMed Central

[7] Haab B.B, Methods and applications of antibody microarrays in cancer research, Proteomics, 2003, 3, 2116–2122. 10.1002/pmic.200300595Search in Google Scholar PubMed

[8] Nafday O.A., Lowry T.W., Lenhert S., Multifunctional Lipid Multilayer Stamping, Small, 2012, 8, 1021–1028. 10.1002/smll.201102096Search in Google Scholar PubMed

[9] Ginger D.S., Zhang H., Mirkin C.A., The Evolution of Dip-Pen Nanolithography, Angew. Chemie, 2004, 43, 30–45. 10.1002/anie.200300608Search in Google Scholar PubMed

[10] Brown K.A., Eichelsdoerfer D.J., Liao X., He S., Mirkin C.A., Material transport in dip-pen nanolithography, Front. Phys., 2014, 9, 385-397. 10.1007/s11467-013-0381-1Search in Google Scholar

[11] Lenhert S., Sun P., Wang Y., Fuchs H., Mirkin C.A., Massively Parallel Dip-Pen Nanolithography of Heterogeneous Supported Phospholipid Multilayer Patterns, Small, 2007, 3, 71–75. 10.1002/smll.200600431Search in Google Scholar PubMed

[12] Brinkmann F., Hirtz M., Greiner A.M., Weschenfelder M., Waterkotte B., Bastmeyer M., Fuchs H., Interdigitated Multicolored Bioink Micropatterns by Multiplexed Polymer Pen Lithography, Small, 2013, 9, 3266–3275. 10.1002/smll.201203183Search in Google Scholar PubMed

[13] Zheng Z., Daniel W.L., Giam L.R., Huo F., Senesi A.J., Zheng G., Mirkin C.A., Multiplexed Protein Arrays Enabled by Polymer Pen Lithography: Addressing the Inking Challenge, Angew. Chemie 2009, 48, 7626–7629. 10.1002/anie.200902649Search in Google Scholar PubMed PubMed Central

[14] Biswas S., Hirtz M., Fuchs H., Measurement of Mass Transfer during Dip-Pen Nanolithography with Phospholipids, Small, 2011, 7, 2081–2086. 10.1002/smll.201100381Search in Google Scholar PubMed

[15] Bian S., He J., Schesing K.B., Braunschweig A.B., Polymer Pen Lithography (PPL)-Induced Site-Specific Click Chemistry for the Formation of Functional Glycan Arrays, Small, 2012, 8, 2000–2005. 10.1002/smll.201102707Search in Google Scholar PubMed

[16] Chen H.-Y., Hirtz M., Deng X., Laue T., Fuchs H., Lahann J., Substrate Independent Dip-Pen Nanolithography Based on Reactive Coatings. J. Am. Chem. Soc., 2010, 132, 18023–18025. 10.1021/ja108679mSearch in Google Scholar PubMed

[17] Long D. A., Unal K., Pratt R. C., Malkoch M., Frommer J., Localized “Click” Chemistry Through Dip-Pen Nanolithography. Adv. Mater., 2007, 19, 4471–4473. 10.1002/adma.200701427Search in Google Scholar

[18] Oberhansl S., Hirtz M., Lagunas A., Eritja R., Martinez E., Fuchs H., Samitier J., Facile Modification of Silica Substrates Provides a Platform for Direct-Writing Surface Click Chemistry, Small, 2012, 8, 541–545. 10.1002/smll.201101875Search in Google Scholar PubMed

[19] Paxton W. F., Spruell J. M., Stoddart J. F., Heterogeneous Catalysis of a Copper-Coated Atomic Force Microscopy Tip for Direct-Write Click Chemistry, J. Am. Chem. Soc. 2009, 131, 6692–6694. Search in Google Scholar

[20] Zhou X., He S., Brown K. A., Mendez-Arroyo J., Boey F., Mirkin C. A., Locally Altering the Electronic Properties of Graphene by Nanoscopically Doping It with Rhodamine 6G, Nano Lett. 2013, 13, 1616–1621. Search in Google Scholar

[21] Lenhert S., Brinkmann F., Laue T., Walheim S., Vannahme C., Klinkhammer S., et al., Lipid multilayer gratings, Nat. Nanotechnol., 2010, 5, 275–279. 10.1038/nnano.2010.17Search in Google Scholar PubMed

[22] Sekula S., Fuchs J., Weg-Remers S., Nagel P., Schuppler S., Fragala J., et al., Multiplexed Lipid Dip-Pen Nanolithography on Subcellular Scales for the Templating of Functional Proteins and Cell Culture, Small, 2008, 4, 1785-1793. 10.1002/smll.200800949Search in Google Scholar PubMed

[23] Wang W.M., Stoltenberg R.M., Liu S., Bao Z., Direct Patterning of Gold Nanoparticles Using Dip-Pen Nanolithography, ACS Nano, 2008, 2, 2135-2142. 10.1021/nn8005416Search in Google Scholar PubMed

[24] Hirtz M., Oikonomou A., Georgiou T., Fuchs H., Vijayaraghavan A., Multiplexed Biomimetic Lipid Membranes on Graphene by Dip-Pen Nanolithography, Nat. Commun., 2013, 4, 2591. Search in Google Scholar

[25] Hirtz M., Corso R., Sekula-Neuner S., Fuchs H., Comparative Height Measurements of Dip-Pen Nanolithography-Produced Lipid Membrane Stacks with Atomic Force, Fluorescence, and Surface Enhanced Ellipsometric Contrast Microscopy, Langmuir, 2011, 27, 11605-11608. 10.1021/la202703jSearch in Google Scholar PubMed

[26] Bellido E., de Miguel R., Sesé J., Ruiz-Molina D., Lostao A., Maspoch D., Nanoscale Positioning of Inorganic Nanoparticles Using Biological Ferritin Arrays Fabricated by Dip-Pen Nanolithography, Scanning, 2010, 32, 35-41. 10.1002/sca.20162Search in Google Scholar PubMed

[27] Kim J., Shin Y., Yun S., Choi D., Nam J., Kim S. R., et al., Direct-Write Patterning of Bacterial Cells by Dip-Pen Nanolithography, J. Am. Chem. Soc., 2012, 134, 16500–16503. 10.1021/ja3073808Search in Google Scholar PubMed

[28] Huang L., Braunschweig A.B., Shim W., Qin L., Lim J.K., Hurst H.J., et al., Matrix-Assisted Dip-Pen Nanolithography and Polymer Pen Lithography, Small, 2010, 6, 1077–1081. 10.1002/smll.200901198Search in Google Scholar PubMed PubMed Central

[29] Senesi A. J., Rozkiewicz D.I., Reinhoudt D.N., Mirkin C.A., Agarose-Assisted Dip-Pen Nanolithography of Oligonucleotides and Proteins, ACS Nano, 2009, 3, 2394–2402. 10.1021/nn9005945Search in Google Scholar PubMed

[30] Yoffe A.D., Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys., 2001, 50, 1–208. 10.1080/00018730010006608Search in Google Scholar

[31] Bera D., Qian L., Tseng T.-K., Holloway P.H., Quantum Dots and Their Multimodal Applications: A Review, Materials, 2010, 3, 2260–2345. 10.3390/ma3042260Search in Google Scholar

[32] Pattani V.P., Li C., Desai T.A., Vu T.Q., Microcontact printing of quantum dot bioconjugate arrays for localized capture and detection of biomolecules, Biomed. Microdevices, 2008, 10, 367–374. 10.1007/s10544-007-9144-5Search in Google Scholar PubMed

[33] Ryman-Rasmussen J.P., Riviere J.E., Monteiro-Riviere N.A., Surface coatings determine cytotoxicity and irritation potential of quantum dot nanoparticles in epidermal keratinocytes, J. Invest. Dermatol., 2007, 127, 143–153. 10.1038/sj.jid.5700508Search in Google Scholar PubMed

[34] Rizzo A., Mazzeo M., Palumbo M., Lerario G., D’Amone S., Cingolani R., Gigli G., Hybrid Light-Emitting Diodes from Microcontact-Printing Double-Transfer of Colloidal Semiconductor CdSe/ZnS Quantum Dots onto Organic Layers, Adv. Mater., 2008, 20, 1886–1891. 10.1002/adma.200701480Search in Google Scholar

[35] Anikeeva P.O., Madigan C.F., Halpert J.E., Bawendi M.G., Bulović V., Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots, Phys. Rev. B, 2008, 78, 085434-1-085434-8. 10.1103/PhysRevB.78.085434Search in Google Scholar

[36] Haverinen H.M., Myllylä R.A., Jabbour G.E., Inkjet printing of light emitting quantum dots, Appl. Phys. Lett., 2009, 94, 073108-1-073108-3. 10.1063/1.3085771Search in Google Scholar

[37] Collins J. M., Lam R. T. S., Yang Z., Semsarieh B., Smetana A. B., Nettikadan S., Targeted Delivery to Single Cells in Precisely Controlled Microenvironments, Lab Chip, 2012, 12, 2643–2648. 10.1039/c2lc40216eSearch in Google Scholar PubMed

[38] Panzer M. J., Aidala K. E., Bulovic V., Contact printing of colloidal nanocrystal thin films for hybrid organic/quantum dot optoelectronic devices, Nano Rev., 2012, 3, 16144. 10.3402/nano.v3i0.16144Search in Google Scholar PubMed PubMed Central

[39] Anikeeva P. O., Halpert J. E., Bawendi M. G., Bulovic V., Quantum dot light emitting devices with electroluminescence tunable over the entire visible spectrum, Nano Lett., 2009, 9, 2532–2536. 10.1021/nl9002969Search in Google Scholar PubMed

[40] Kim T.H., Cho K.S., Lee E.K., Lee S.J., Chae J., Kim J.W., et al., Full-colour quantum dot displays fabricated by transfer printing, Nat. Photonics, 201 1, 5, 176-182. 10.1038/nphoton.2011.12Search in Google Scholar

[41] Bog U., Laue T., Grossmann T., Beck T., Wienhold T., Richter B., et al., On-chip microlasers for biomolecular detection via highly localized deposition of a multifunctional phospholipid ink, Lab Chip, 2013, 13, 2701-2707. 10.1039/c3lc50149cSearch in Google Scholar PubMed

[42] Bog U., Brinkmann F., Kalt H., Koos C., Mappes T., Hirtz M., et al., Large-Scale Parallel Surface Functionalization of Goblet-Type Whispering Gallery Mode Microcavity Arrays for Biosensing Applications, Small, 2014, 10, 3863-3868. 10.1002/smll.201400813Search in Google Scholar PubMed

[43] Sekula-Neuner S., Maier J., Oppong E., Cato A.C.B., Hirtz M., Fuchs H., Allergen Arrays for Antibody Screening and Immune Cell Activation Profiling Generated by Parallel Lipid Dip-Pen Nanolithography, Small, 2012, 8, 585-591. 10.1002/smll.201101694Search in Google Scholar PubMed

[44] Oppong E., Hedde P.N., Sekula-Neuner S., Yang L., Brinkmann F., Dörlich R. et al., Localization and Dynamics of Glucocorticoid Receptor at the Plasma Membrane of Activated Mast Cells, Small, 2014, 10, 1991-1998. 10.1002/smll.201303677Search in Google Scholar PubMed

[45] Haaheim J., Val V., Bussan J., Rozhok S., Jang J.-W., Fragala J., Nelson M., Self-leveling two-dimensional probe arrays for Dip Pen Nanolithography, Scanning, 2010, 32, 49–59. 10.1002/sca.20175Search in Google Scholar PubMed

Received: 2014-11-2
Accepted: 2015-2-9
Published Online: 2015-5-6

© 2015 Soma Biswas et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 24.9.2023 from https://www.degruyter.com/document/doi/10.1515/nanofab-2015-0002/html
Scroll to top button