Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access May 8, 2015

Lipid nanotube networks: Biomimetic Cell-to-Cell Communication and Soft-Matter Technology

Irep Gözen and Aldo Jesorka
From the journal Nanofabrication


[1] Abounit S., Zurzolo C., Wiring through tunneling nanotubes - from electrical signals to organelle transfer, J. Cell Sci., 2012 , 125, 1089-1098. 10.1242/jcs.083279Search in Google Scholar

[2] Kumar N.M., Gilula N.B., The gap junction communication channel, Cell, 1996, 84, 381-388. 10.1016/S0092-8674(00)81282-9Search in Google Scholar

[3] Fevrier B., Raposo G., Exosomes: endosomal-derived vesicles shipping extracellular messages, Curr. Opin. Cell Biol., 2004, 16, 415-421. 10.1016/ in Google Scholar PubMed

[4] Kimura S., Hase K., Ohno H., The molecular basis of induction and formation of tunneling nanotubes, Cell Tissue Res., 2013, 352, 67-76. 10.1007/s00441-012-1518-1Search in Google Scholar PubMed

[5] Davis D.M., Sowinski S., Membrane nanotubes: dynamic long-distance connections between animal cells, Nat. Rev. Mol. Cell Biol., 2008, 9, 431-436. 10.1038/nrm2399Search in Google Scholar PubMed

[6] Marzo L., Gousset K., Zurzolo C., Multifaceted roles of tunneling nanotubes in intercellular communication, Front. Physiol., 2012, 3, 72. 10.3389/fphys.2012.00072Search in Google Scholar PubMed PubMed Central

[7] Hurtig J., Chiu D.T., Onfelt B., Intercellular nanotubes: insights from imaging studies and beyond, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2, 260-276. 10.1002/wnan.80Search in Google Scholar PubMed PubMed Central

[8] Rustom A., Saffrich R., Markovic I., Walther P., Gerdes H.H., Nanotubular highways for intercellular organelle transport, Science, 2004, 303, 1007-1010. 10.1126/science.1093133Search in Google Scholar PubMed

[9] Pascoal P., Kosanic D., Gjoni M., Vogel H., Membrane nanotubes drawn by optical tweezers transmit electrical signals between mammalian cells over long distances, Lab Chip, 2010, 10, 2235-2241. 10.1039/c004659kSearch in Google Scholar PubMed

[10] Lachambre S., Chopard C., Beaumelle B., Preliminary characterisation of nanotubes connecting T-cells and their use by HIV-1, Biol. Cell, 2014, 106, 394-404. 10.1111/boc.201400037Search in Google Scholar PubMed

[11] Takahashi A., Kukita A., Li Y.J., Zhang J.Q., Nomiyama H., Yamaza T., et al., Tunneling nanotube formation is essential for the regulation of osteoclastogenesis, J. Cell. Biochem., 2013, 114, 1238-1247. 10.1002/jcb.24433Search in Google Scholar PubMed

[12] Thayanithy V., Babatunde V., Dickson E.L., Wong P., Oh S., Ke X., et al., Tumor exosomes induce tunneling nanotubes in lipid raft-enriched regions of human mesothelioma cells, Exp. Cell Res., 2014, 323, 178-188. 10.1016/j.yexcr.2014.01.014Search in Google Scholar PubMed PubMed Central

[13] Pasquier J., Guerrouahen B.S., Al Thawadi H., Ghiabi P., Maleki M., Abu-Kaoud N., et al., Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance, J. Transl. Med., 2013, 11, 94. 10.1186/1479-5876-11-94Search in Google Scholar PubMed PubMed Central

[14] Costanzo M., Abounit S., Marzo L., Danckaert A., Chamoun Z., Roux P., et al., Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes, J. Cell Sci., 2013, 126, 3678-3685. 10.1242/jcs.126086Search in Google Scholar PubMed

[15] Rupp I., Sologub L., Williamson K.C., Scheuermayer M., Reininger L., Doerig C., et al., Malaria parasites form filamentous cell-to-cell connections during reproduction in the mosquito midgut, Cell Res., 2011, 21, 683-696. 10.1038/cr.2010.176Search in Google Scholar PubMed PubMed Central

[16] Agnati L., Guidolin D., Maura G., Marcoli M., Leo G., Carone C., et al., Information handling by the brain: proposal of a new “paradigm” involving the roamer type of volume transmission and the tunneling nanotube type of wiring transmission, J. Neural Transm., 2014, 121, 1431-1449. 10.1007/s00702-014-1240-0Search in Google Scholar PubMed

[17] Agnati L.F., Fuxe K., Extracellular-vesicle type of volume transmission and tunnelling-nanotube type of wiring transmission add a new dimension to brain neuro-glial networks, Phil. Trans. R. Soc. B, 2014, 369, 20130505. 10.1098/rstb.2013.0505Search in Google Scholar PubMed PubMed Central

[18] Gozen I., Jesorka A., Instrumental Methods to Characterize Molecular Phospholipid Films on Solid Supports, Anal. Chem., 2012, 84, 822-838. 10.1021/ac203126fSearch in Google Scholar PubMed

[19] Karlsson M., Davidson M., Karlsson R., Karlsson A., Bergenholtz J., Konkoli Z., et al., Biomimetic nanoscale reactors and networks, Annu. Rev. Phys. Chem., 2004, 55, 613-649. 10.1146/annurev.physchem.55.091602.094319Search in Google Scholar PubMed

[20] Jesorka A., Stepanyants N., Zhang H.J., Ortmen B., Hakonen B., Orwar O., Generation of phospholipid vesicle-nanotube networks and transport of molecules therein, Nat. Protoc., 2011, 6, 791-805. 10.1038/nprot.2011.321Search in Google Scholar PubMed

[21] Lizana L., Bauer B., Orwar O., Controlling the rates of biochemical reactions and signaling networks by shape and volume changes, Proc. Natl. Acad. Sci. USA, 2008, 105, 4099-4104. 10.1073/pnas.0709932105Search in Google Scholar PubMed PubMed Central

[22] Gozen I., Billerit C., Dommersnes P., Jesorka A., Orwar O., Calcium Ion Controlled Nanoparticle Induced Tubulation in Supported Flat Phospholipid Vesicles, Biophys. J., 2012, 102, 94a. 10.1016/j.bpj.2011.11.534Search in Google Scholar

[23] Castillo J.A., Narciso D.M., Hayes M.A., Bionanotubule Formation from Surface-Attached Liposomes Using Electric Fields, Langmuir, 2009, 25, 391-396. 10.1021/la8028897Search in Google Scholar PubMed

[24] Frusawa H., Manabe T., Kagiyama E., Hirano K., Kameta N., Masuda M., et al., Electric moulding of dispersed lipid nanotubes into a nanofluidic device, Sci. Rep., 2013, 3, 2165. Search in Google Scholar

[25] Sugihara K., Chami M., Derenyi I., Voros J., Zambelli T., Directed Self-Assembly of Lipid Nanotubes from Inverted Hexagonal Structures, ACS Nano, 2012, 6, 6626-6632. 10.1021/nn300557sSearch in Google Scholar PubMed

[26] Karlsson M., Sott K., Cans A.S., Karlsson A., Karlsson R., Orwar O., Micropipet-assisted formation of microscopic networks of unilamellar lipid bilayer nanotubes and containers, Langmuir, 2001, 17, 6754-6758. 10.1021/la0108611Search in Google Scholar

[27] Zhang H., Xu S., Jeffries G.D.M., Orwar O., Jesorka A., Artificial nanotube connections and transport of molecular cargo between mammalian cells, Nano Commun. Netw., 2013, 4, 197-204. 10.1016/j.nancom.2013.08.006Search in Google Scholar

[28] Davidson M., Karlsson M., Sinclair J., Sott K., Orwar O., Nanotube-vesicle networks with functionalized membranes and interiors, J. Am. Chem. Soc., 2003, 125, 374-378. 10.1021/ja027699oSearch in Google Scholar PubMed

[29] Bauer B., Davidson M., Orwar O., Direct reconstitution of plasma membrane lipids and proteins in nanotube-vesicle networks, Langmuir, 2006, 22, 9329-9332. 10.1021/la060828kSearch in Google Scholar PubMed

[30] Kameta N., Minamikawa H., Masuda M., Supramolecular organic nanotubes: how to utilize the inner nanospace and the outer space, Soft Matter, 2011, 7, 4539-4561. 10.1039/c0sm01559hSearch in Google Scholar

[31] Sugihara K., Rustom A., Spatz J.P., Freely drawn single lipid nanotube patterns, Soft Matter, 2015, 11, 2029-2035. 10.1039/C5SM00043BSearch in Google Scholar PubMed

[32] Wegrzyn I., Jeffries G.D.M., Nagel B., Katterle M., Gerrard S.R., Brown T., et al., Membrane Protrusion Coarsening and Nanotubulation within Giant Unilamellar Vesicles, J. Am. Chem. Soc., 2011, 133, 18046-18049. 10.1021/ja207536aSearch in Google Scholar PubMed

[33] Markstrom M., Lizana L., Orwar O., Jesorka A., Thermoactuated diffusion control in soft matter nanofluidic devices, Langmuir, 2008, 24, 5166-5171. 10.1021/la7035967Search in Google Scholar PubMed

[34] Czolkos I., Guan J., Orwar O., Jesorka A., Flow control of thermotropic lipid monolayers, Soft Matter, 2011, 7, 6926-6933. 10.1039/c1sm05455dSearch in Google Scholar

[35] Gozen I., Shaali M., Ainla A., Ortmen B., Poldsalu I, Kustanovich K., et al., Thermal migration of molecular lipid films as a contactless fabrication strategy for lipid nanotube networks, Lab Chip, 2013, 13, 3822-3826. 10.1039/c3lc50391gSearch in Google Scholar PubMed

Received: 2015-2-21
Accepted: 2015-3-19
Published Online: 2015-5-8

© 2015 Irep Gözen, Aldo Jesorka

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Scroll Up Arrow